

Single-Cylinder Research Engine

Southwest Research Institute[®] (SwRI[®]) offers a range of advanced single-cylinder research engines for use in combustion and tribology research and development.

These platforms are available for purchase for use in a client's laboratory or for contract research projects at SwRI.

Unique Features

- The engines are designed for low-cost operation through the use of many commercial off-the-shelf replaceable components.
- Either customer-supplied or bespoke single- or multi-cylinder heads can be accommodated, to replicate the operation of production combustion systems and cooling strategies.
- Reconfiguration and customization options allow evolution over time. SwRI policy is to share CAD models of custom parts and interface drawings.
- Support, training, and documentation are offered with each engine, for straightforward commissioning, operation, ease of servicing, and to provide for accuracy and repeatability of measurement. This avoids hidden costs.
- Our highly flexible, affordable VVA (variable valve actuation) system is easy to operate, requires minimal electronic control, and is portable to different cylinder heads. Full authority, multiple-event VVA systems are also available.
- Various customization options are available to suit your specific needs and objectives.

Specifications and Options				
	Light & Medium Duty	Heavy Duty	High-speed High Horsepower	Medium-speed High Horsepower
Bore	60-110 mm	110-145 mm	150-200 mm	200-350 mm
Stroke	65-125 mm	110-185 mm	Up to 250 mm	Up to 450 mm
Peak Cylinder Pressure	200 bar at 110 mm bore	300 bar at 145 mm bore	300 bar at 200 mm bore	300 bar at 350 mm bore
Maximum speed	7000 rpm	2500 rpm	2000 rpm	1200 rpm
Variable cylinder offset	-5 to +20 mm	0 to 25 mm	Fixed	
Adjustable compression ratio	\checkmark			
1 st order balancing	\checkmark			
2 nd order balancing	Optional		\checkmark	
Cam phasing	Optional			
Advanced VVA	Optional			
Full authority VVA	Optional			
Optical access	Optional			
Grasshopper or piston telemetry	Optional			
Tribology pack	Optional			
Test cell boost cart	Optional			
Engine control	Optional – Commercial hardware and open source code			
Digital twin	Optional			

We welcome your inquiries. For more information, please contact:

Douglas C. Eberle Manager, Powertrain Design and Analysis 210.522.5260 douglas.eberle@swri.org

Powertrain Engineering Division

enginedesign.swri.org

Southwest Research Institute is a premier independent, nonprofit research and development organization using multidisciplinary services to provide solutions to some of the world's most challenging scientific and engineering problems. Headquartered in San Antonio, Texas, our client-focused, client-funded organization occupies 1,500 acres, providing more than 2.3 million square feet of laboratories, test facilities, workshops, and offices for approximately 3,000 employees who perform contract work for government and industry clients.

An Equal Employment Opportunity/Affirmative Action Employer Race/Color/Religion/Sex/Sexual Orientation/Gender Identity/National Origin/Disabled/Veteran Committed to Diversity in the Workplace 210.522.2122 ask@swri.org

©2020 Southwest Research Institute. All rights reserved. Designed & printed by SwRI MPS 03-1020 JCN 264709 tp