2.2.3 Choosing the Crack Geometry

The next few pages provide a "catalog" of currently available crack cases in NASGRO, organized by crack category. The summary Table 2.2.1 provides a listing of all crack cases for each crack type, followed by groups of figures in Fig. 2.2.4 through Fig. 2.2.73 that provide schematic diagrams of each SIF model and supplementary information about nomenclature, loading, and geometry limits. These diagrams are taken directly from the NASFLA GUI. The GUI allows the user to export the diagrams as bitmap files that can be integrated into user reports. The following is a grouped list of the figures according to crack type:

- Through crack (TC) geometries are shown in Fig. 2.2.4 through Fig. 2.2.34
- Corner crack (CC) geometries are shown in Fig. 2.2.35 through Fig. 2.2.48
- Surface-crack (SC) geometries are shown in Fig. 2.2.49 through Fig. 2.2.68
- Embedded crack (EC) geometries are shown in Fig. 2.2.69
- Hybrid crack (HC) geometries are shown in Fig. 2.2.70
- Standard specimen (SS) geometries are shown in Fig. 2.2.71 through Fig. 2.2.72
- Boundary element (BE) crack cases are shown in Fig. 2.2.73

Besides the crack geometries listed above, four data table (DT) cases, four SIF table (KT) cases, and one polynomial solution (PS01) are also available for use.

The user selects the desired crack geometry by clicking on the **Show crack case library** button in the **Geometry** tab of the GUI and then using selection boxes in the pop-up window. After selecting the appropriate crack case, the figure is displayed in the **Geometry** tab and the user can enter dimensional information such as width, thickness, diameter, etc. in the text boxes provided.

The majority of the crack cases come with standard loading types such as uniform tension, bending, and bearing stresses where applicable. To provide a consistent approach, S0 is reserved for tension and compression, S1 and S2 are bending stresses in through-the-thickness (out of plane) and width (in-plane) directions, S3 is the bearing stress, and S4 is reserved for the second tension/compression stress for cases that have biaxial loading. Besides the standard loading types, all weight function based crack cases also offer general non-linear loading capability. In Table 2.2.1, such weight function based SIF models can be identified by their case names, which end with either "univariant WF" or "bivariant WF". There are a few special crack cases in the NASGRO library that are designed to work with remote displacement profiles instead of stress. The names of these particular cases end with the designation "displacement control".

Additional information regarding the SIF models may be found in Section 4 and Appendices C and D. The details of nonlinear stress input through tabular, polynomial, and external stress files are given in the "Weight Function Solution Options" section in Appendix C.

ID	Name
	Through Cracks
TC01	Through crack at center of plate
TC02	Through crack at edge of plate
TC03	Through crack at hole (offset) in plate
TC05	Through crack(s) at hole in plate with row of holes
TC06	Through crack in hollow sphere

Continued on next page

ID	Name		
	Through crack (axial) in hollow cylinder		
TC08	Through crack (circumferential) inthicn cylinder		
TC09	Through crack at hole in plate under biaxial loading		
TC10	Through crack (circumferential) at hole in hollow cylinder		
TC11	Through crack (offset) in plate – univariant WF		
TC12	Through crack at edge of plate – univariant WF		
TC13	Through crack(s) at hole (offset) in plate, univariant WF		
TC14	Through crack at edge of plate – displacement control		
TC15	Through crack at edge of variable thickness plate – univariant WF		
TC16	Through crack in thin curved stiffened panel with bulging		
TC17	Through crack at edge notch in plate – univariant WF		
TC18	Through crack(s) at (offset) embedded slot or elliptical hole in plate – univariant WF		
TC19	Through crack at hole (offset) in plate with broken ligament – univariant WF		
TC23	Two unequal through cracks at offset hole		
TC24	Through crack (offset) in plate – displacement control		
TC25	Through crack at edge rectangular cutout with rounded corners		
TC26	Through crack at offset internal rectangular cutout with rounded corners		
TC27	Through crack at hole in lug – univariant WF		
TC28	Curved through crack at edge of plate – univariant WF		
TC29	Offset curved through crack in plate – univariant WF		
TC30	Through crack at hole in obliquely loaded and tapered lug - univariant WF		
TC31	Through crack in L-section under remote loading – pre-corner		
TC32	Through crack in L-section under remote loading – post-corner		
TC33	Through crack growing toward a hole		
TC34	Two collinear through cracks of unequal lengths		
TC35	Through crack at edge of plate with one symmetric step change in thickness		
TC37	Through crack in C-section under remote loading		
TC38	Through crack at an interference fit hole		
TC39	Through crack in T-section under remote loading		
TC40	Through crack between two unequal holes (offset) in plate		
TC43	Through $crack(s)$ at hole (offset) in plate – univariant WF		
	Corner Cracks		
CC01	Quarter elliptical corner crack in plate		
CC08	Quarter elliptical corner crack(s) at hole (offset) in plate – univariant WF		
CC09	Quarter elliptical corner crack in plate - bivariant WF		
CC10	Quarter elliptical corner crack at hole (offset) in plate - bivariant WF		
CC11	Quarter elliptical corner crack in plate - univariant WF		
CC12	Quarter elliptical corner crack at chamfer in plate - bivariant WF		
CC13	Quarter elliptical corner crack at edge notch in plate		
CC14	Quarter elliptical corner crack at (offset) embedded slot or elliptical hole in plate		
CC15	Quarter elliptical corner crack at (offset) hole in plate with broken ligament		
CC16	Corner crack(s) at a hole based on Fawaz-Anderson solution		

Table 2.2.1: Description of Crack Cases (cont.)

Continued on next page

ID	Name		
CC17	Two unequal corner cracks at a hole in a finite plate		
CC18	Part elliptical corner crack at angled corner - bivariant WF		
CC19	Quarter elliptical corner crack at hole in lug - univariant WF		
CC20	Quarter elliptical corner crack in plate - displacement control		
CC21	Corner crack at edge rectangular cutout with rounded corners		
CC22	Corner crack at offset internal rectangular cutout with rounded corners		
CC23	Corner crack at hole in obliquely loaded and tapered lug - univariant WF		
CC24	Corner crack(s) at hole(s) in plate with row of holes		
CC25	Corner crack at countersunk hole in infinite plate (Cronenberger solution)		
CC26	Quarter elliptical corner crack at hole (offset) in plate - bivariant WF		
	Surface Cracks		
SC01	Semi-elliptical surface crack in plate		
SC02	Semi-elliptical surface crack in plate – univariant WF		
SC03	Semi-elliptical surface crack in pressurized sphere		
SC04	Semi-elliptical surface crack (axial) in hollow cylinder – univariant WF		
SC05	Semi-elliptical surface crack (circumferential) in hollow cylinder		
SC06	Constant-depth surface crack (circumferential) in hollow cylinder – univariant WF		
SC07	Semi-elliptical surface crack (circumferential) in solid cylinder		
SC08	Semi-elliptical surface crack (circumferential) in threaded solid cylinder		
SC09	Constant-depth surface crack (circumferential) in threaded solid cylinder		
SC10	Constant-depth surface crack (circumferential) in threaded hollow cylinder		
SC11	Semi-elliptical surface crack(s) at hole in plate		
SC13	Semi-elliptical surface crack in bolt head fillet – shear bolt		
SC14	Semi-elliptical surface crack in bolt head fillet – tension bolt		
SC18	Semi-elliptical surface crack(s) (offset) at hole (offset) in plate – univariant WF		
SC26	Surface crack at edge notch in plate		
SC27	Surface crack at (offset) embedded slot or elliptical hole in plate		
SC28	Surface crack at (offset) hole in plate with broken ligament		
SC29	Semi-elliptical surface crack (offset) at hole (offset) in plate – bivariant WF		
SC30	Semi-elliptical surface crack (offset) in plate – univariant WF		
SC31	Semi-elliptical surface crack (offset) in plate – bivariant WF		
SC32	Semi-elliptical surface crack at hole in lug – univariant WF		
SC33	Semi-elliptical surface crack at center of plate – displacement control		
SC34	External surface crack in a hollow cylinder – univariant WF		
SC35	Semi-elliptical surface crack in a solid cylinder – univariant WF		
SC36	Semi-elliptical surface crack (external circumferential) in sphere – univariant WF		
SC37	Semi-elliptical surface crack(s) (offset) at hole (offset) in plate univariant WF		
SC38	Semi-elliptical surface crack (offset) at hole (offset) in plate — bivariant WF $$		
	Embedded Cracks		

Table 2.2.1: Description of Crack Cases (cont.)

- EC04 Elliptical embedded crack (offset) in plate bivariant WF
- $\rm EC05$ $\,$ Elliptical embedded crack (offset) in plate univariant WF $\,$

Table 2.2.1: Description of Crack Cases (cont.)

ID	Name		
	Hybrid Cracks		
HC01	HC01 - corner crack and through crack at hole (offset)		
	Data Tables		
DT01	One dimensional data table for a through grack (one tip)		
D101 DT02	Two dimensional data table for a through grack (one tip)		
D102 DT03	Two-dimensional data table for a part through grack (two tips)		
D103 DT04	Two dimensional data table for one or two through cracks (two tips)		
D104	1 wo-dimensional data table for one of two through-cracks (two tips)		
	Stress Intensity Factor Tables		
KT01	One-dimensional stress intensity factor table for a through crack (one tip)		
KT02	Two-dimensional stress intensity factor table for a through crack (one tip)		
KT03	Two-dimensional stress intensity factor table for a part-through crack (two tips)		
KT04	Two-dimensional stress intensity factor table for one or two through-cracks (two tips)		
	Polynomial Series		
PS01	Polynomial series		
9994	Standard Specimens		
SS01	Middle crack tension specimen $M(T)$		
SS02	Compact tension specimen $C(T)$		
SS03	Disc-shaped compact tension specimen DC(T)		
SS04	Arc-shaped tension specimen $A(T)$		
SS05	Single edge crack bend specimen $SE(B)$ – three-point bend		
SS06	Single edge crack tension specimen $SE(T)$ – constrained ends		
2201	Notched round bar specimen R-bar(1) – circumferential crack		
2208	Single edge notch tension specimen SEN(1) with semi-emptical surface crack		
5509 5510	Single edge notch tension specimen SEN(1) with quarter-emptical corner crack		
SS10 8811	Single edge notch tension specifien SEN(1) with through crack		
SS11 SS11	$\mathbf{F}_{\text{construct}}$		
SS12 SS12	Some as $SC01$ for use by NASMAT only		
SS13 SS14	Same as SC01, for use by NASMAT only		
5514	Same as Serr, for use by MASMARI only		
	Superseded Solutions		
TC04	Through crack at hole in lug		
CC02	Quarter elliptical corner crack at hole (offset) in plate		
CC03	Quarter elliptical corner crack at hole in lug		
CC04	Quarter elliptical corner crack(s) at hole in plate		
CC05	Corner crack in rectangular plate subjected to bivariant stress		
CC07	Quarter elliptical corner crack at hole in plate		
SC12	Semi-elliptical surface crack(s) at hole in lug		
SC15	Surface crack in plate subjected to bivariant stress		
SC17	Semi-elliptical surface crack (offset) in plate – univariant WF		
	Continued on next page		
	45		

Table 2.2.1. Description of Clack Cases (cont.)		
ID	Name	
SC19	Semi-elliptical surface crack (offset) in plate – bivariant WF	
EC01	Elliptical embedded crack in plate	
EC02	Elliptical embedded crack (offset) in plate – univariant WF	
BE02	Two through cracks of unequal length at opposite sides of hole (offset) in plate	
BE03	Through crack and corner crack at opposite sides of hole (offset) in plate	

Table 2.2.1: Description of Crack Cases (cont.)

2.2.4 Transition of Crack Geometry

Crack growth analysis is usually conducted on part-through cracks, such as surface or corner crack in a plate. As the crack grows, the depth of the crack may exceed the thickness before the crack becomes unstable. In such instances, growth will continue using the corresponding through crack and then the crack will grow some more before becoming critical. Table 2.2.2 shows the transition relation between crack cases (with details given in Appendix D).

From	То	Condition/Comment		
TC03	TC02			
TC11	TC12	Either crack tip can set off the transition		
TC23	TC19	Either crack tip can set off the transition		
TC24	TC14			
TC29	TC28			
TC31	TC32			
TC33	TC13			
TC34	TC11			
TC37	TC37	From first flange to web and to second flange		
TC39	TC39	From flange to flange & web		
$\rm CC01$	TC02 or TC28			
CC02	TC03			
CC03	TC04			
CC04	TC03	Occurs only if number of cracks=1		
CC05	TC12	Uses averaged unvariant stresses in TC12		
$\rm CC07$	TC03	Occurs only if number of cracks=1		
CC08	TC13 or TC43			
CC09	TC12 or TC28			
CC10	TC13			
CC11	TC12 or TC28	Either crack tip can set off the transition		
CC12	TC12			
CC13	TC17			

Table 2.2.2: Transition Relationship between Crack Cases (Details in Appendix D)

Continued on next page

From	То	Condition/Comment
CC14	TC18	
CC15	TC19	
CC16	TC03 or TC23	
CC17	HC01 or TC23	
CC18	CC12	
CC19	TC27	
CC21	TC25	
CC22	TC26	
CC23	TC30	
CC24	TC05	
CC26	TC13	
SC01	TC01	
SC02	TC01	Uses equivalent stresses in TC01
SC03	TC06	S_1 should be zero
SC04	TC07	Uses equivalent stresses in TC07
SC05	TC08	Both external & internal cracks undergo transition
SC11	TC03	Occurs only if number of cracks=1
SC12	TC04	Occurs only if number of cracks=1
SC15	TC11	
SC17	CC11, TC11, or TC12	
SC18	CC08 or TC13	
SC19	CC09, TC11, or TC12	
SC26	CC13 or TC17	
SC27	CC14 or TC18	
SC28	CC15 or TC19	
SC29	CC10 or TC13	
SC30	CC11, TC11, TC12	
	TC28, or $TC29$	
SC31	CC09, TC11, TC12, or TC29	
SC32	CC19 or TC27	
SC37	CC08 or TC43	
SC38	CC26 or TC43	
EC01	TC01	
EC02	SC30	
EC04	SC31, CC09, TC11, or TC12	Either crack tip can set off the transition
EC05	SC30, CC11, TC11, or TC12	Either crack tip can set off the transition
HC01	CC15 or $TC23$	
SS08	SS10	
SS09	$\mathbf{SS10}$	
SS11	TC03	

Table 2.2.2: Transition Relationship between Crack Cases (cont.)

Whenever nonlinear stresses are present in a part-through crack model, the statically equivalent tension and bending loads are computed and the corresponding nominal stresses S0, S1 are obtained for use in the through crack model to which the part-through crack transitions. Numerical integration is performed over the cross section of the geometry in use. In some cases such as CC05 to TC12, the bivariant stress field is integrated across the thickness but the variation along width is preserved.

Figure 2.2.4: Through crack cases TC01, TC02, TC03, and TC04

(c) Two cracks at each hole

R = mean radius = (D - t)/2

Figure 2.2.6: Through crack cases TC06, TC07, TC08, and TC09

Figure 2.2.7: Through crack case TC10

Figure 2.2.8: Through crack case TC11

Figure 2.2.9: Through crack case TC12

Figure 2.2.10: Through crack case TC13

TC13

 $0.1 \le 2B/W \le 1$ $0.05 \le (D/2)/B \le 0.9$ t = thickness $S_i(X) \quad i = 0,1,2,3$ X = x/(W-B-D/2)

 $0.0 \le X \le 1.0$

B = W/20.05 ≤ (D/2)/B ≤ 0.9 t = thickness S_i(X) i = 0,1,2,3 X = x/(B-D/2) 0.0 ≤ X ≤ 1.0

Figure 2.2.13: Through crack cases TC15 and TC16

Figure 2.2.14: Through crack case TC17 $\,$

 $0.05 \le e_1/B \le 0.75$ $0.2 \leq e_1/e_2 \leq 5$ $0.01 \leq 2B/W \leq 1$ $c/(B-e_1) \le 0.99$

 $0.05 \le e_1/B \le 0.75$ $0.2 \leq e_1/e_2 \leq 5$ B = W/2 $c/(B{-}e_1) \leq 0.99$

**

S2

 $0.05 \le (d+r)/B \le 0.75$ $0 \leq d/r \leq 24$ $0.01 \le 2B/W \le 1$ $c/(B-d-r) \le 0.99$

Figure 2.2.15: Through crack case TC18

Figure 2.2.16: Through crack case TC19

Figure 2.2.17: Through crack cases TC23 and TC24

Figure 2.2.18: Through crack case TC25

Figure 2.2.19: Through crack case TC26

Figure 2.2.20: Through crack case TC27

Figure 2.2.21: Through crack case TC28

Figure 2.2.22: Through crack case TC29

Figure 2.2.23: Through crack case TC30

Figure 2.2.24: Through crack case TC31

Figure 2.2.25: Through crack case TC32

Figure 2.2.26: Through crack cases TC33 and TC34

Figure 2.2.27: Through crack cases TC35

τιĪ

С

-W1

TC35

TC35

Figure 2.2.28: Through crack case TC35 (cont)

Figure 2.2.29: Through crack case TC37

Figure 2.2.30: Through crack case TC38

Figure 2.2.31: Through crack case TC39

 $\begin{array}{l} 1/64 \, \leq \, D_1/D_2 \, \leq \, 64 \\ d = H - (D_1 + D_2)/2 \\ 1/25 \, \leq \, d/(D_1 + D_2) \, \leq \, 5 \\ 1 \, \leq \, B/D_1 \\ 1 \, \leq \, (W - B - H)/D_2 \\ 0 \, \leq \, c/d \, \leq \, 0.99 \end{array}$

Figure 2.2.32: Through crack case TC40

Figure 2.2.33: Through crack case TC43

Figure 2.2.34: Through crack case TC43 (cont)

Figure 2.2.35: Corner crack case CC01

Figure 2.2.36: Corner crack case CC08

CC09

CC11

CC11

Figure 2.2.37: Corner crack cases CC09, CC10, and CC11

CC12

Figure 2.2.39: Corner crack case CC13

Figure 2.2.40: Corner crack case CC14

Figure 2.2.42: Corner crack case CC16

CC17

Figure 2.2.44: Corner crack case CC18

CC19

9	CC	:19
S₃= P/Dt	← W →	S₃= P/Dt
$0.1 \leq D/2t \leq 10$		$0.1 \leq D/2t \leq 10$
1.25 ≤ W/D ≤ 10		1.25 ≤ W/D ≤ 10
$0 \leq c/(W-D) \leq 0.45$		0 ≤ c/(W-D) ≤ 0.45
a/c ≥ 0.1	A → t	a/c ≥ 0.1
0 ≤ a/t ≤ 0.9	─► c _► c 	0 ≤ a/t ≤ 0.9
	U U	

Figure 2.2.46: Corner crack cases CC20 and CC21

н

Ρ

a/c ≥ 0.1

 $0 \leq a/t \leq 0.9$

 $c \leq \min\left(0.9\,L_C,\,R\text{-}D/2\right)$

CC22 S₂ S₀ t ŧ $1 \leq d/2r \leq 11$ v в $0.05 \le d/2B \le 0.5$ ы w. $1 \le h/2r \le 6$ $0.1 \le 2B/W \le 1$ Y $0.1 \le d/(2t) \le 10.0$ a/c ≥ 0.1 $c/W_S \leq 0.9$ a/t ≤ 0.95 S₀ S_2 **8: calculated by** NASGRO for max stress concentration location at radius **CC23 CC23** $S_3 = P/Dt$ S3 = P/Dtн $0.1 \le D/2t \le 10$ $0.1 \le D/2t \le 10$ $1.25 \le 2R/D \le 10$ $1.25 \le 2R/D \le 10$ $1 \leq H/2R \leq 2$ $1 \leq H/2R \leq 2$ $0^{\circ} \le \phi \le 90^{\circ}$ $0^{\circ} \leq \phi \leq 90^{\circ}$ Р $0^{\circ} \leq \theta \leq 90^{\circ}$ $0^{\circ} < \theta \le 90^{\circ}$

a/c ≥ 0.1

 $0 \leq a/t \leq 0.9$

 $0 \leq c/L_C \leq 0.9$

Figure 2.2.47: Corner crack cases CC22 and CC23

CC24

Figure 2.2.48: Corner crack cases CC24, CC25, and CC26

Figure 2.2.49: Surface crack cases SC01, SC02, and SC03

Figure 2.2.50: Surface crack cases SC04 and SC05

Figure 2.2.52: Surface crack case SC07

Figure 2.2.53: Surface crack case SC08

Figure 2.2.54: Surface crack case SC09

Figure 2.2.55: Surface crack case SC10

Figure 2.2.56: Surface crack case SC11

Shear or Machine Bolt - Machined Fillet

Figure 2.2.57: Surface crack case SC13

Figure 2.2.58: Surface crack case SC14

SC18

SC18

SC18

Figure 2.2.59: Surface crack case SC18

Figure 2.2.60: Surface crack case SC26

SC27

SC27

Figure 2.2.61: Surface crack case SC27

SC27

Figure 2.2.62: Surface crack case SC28

Figure 2.2.63: Surface crack cases SC29 and SC30

Figure 2.2.64: Surface crack cases SC31, SC32, and SC33

Figure 2.2.65: Surface crack cases SC34 and SC35

Figure 2.2.66: Surface crack case SC36

SC37

SC37

Figure 2.2.67: Surface crack case SC37

Figure 2.2.68: Surface crack case SC38

93

Figure 2.2.69: Embedded crack cases EC04 and EC05 $\,$

Figure 2.2.70: Hybrid crack case HC01

₽

Ρ

Friction Grips

No Rotation

¥ P

w

SS07

Figure 2.2.72: Standard specimen crack cases SS07, SS08, SS09, SS10, SS11, and SS12

Figure 2.2.73: Boundary element crack cases BE02 and BE03

2.2.5 Entering the Initial Flaw Size

NASGRO offers two options for input of the initial flaw size:

- User entry: the user types the flaw size in a text box
- **NASA standard NDE**: the user selects a nondestructive evaluation (NDE) method from a list of NASA-approved methods and the initial flaw size is set automatically according to the chosen method

The NASA standard NDE crack size has a high probability of detection when an inspection is performed in accordance with the proper NASA specifications (as taken from the NASA NDE requirements document). From a damage tolerance point of view, the NASA standard NDE flaw size is one that may be just missed by the inspector and hence the structure should be able to withstand it for certain number of fatigue load cycles.

The current NASA NDE requirements document NASA-STD-5009 ("Nondestructive Evaluation Requirements for Fracture-Critical Metallic Components") was published in 2008; this supersedes the prior requirements document, MSFC-STD-1249 ("Standard NDE Guidelines and Requirements for Fracture Control Programs"). The requirements document establishes the NDE specifications (including inspector qualifications, applicable methods and initial flaw sizes) for any NASA system or component, flight or ground, where fracture control is a requirement.

As of v6.0 (released 3/2009), NASGRO's list of NASA standard NDE initial flaw sizes and methods reflects the contents of NASA-STD-5009. The essential differences between v6.0 (NASA-STD-5009) and v5.22 (MSFC-STD-1249) in terms of NASGRO crack cases are shown in Tables 2.2.3 and 2.2.4 for US customary and SI units, respectively.

NASGRO offers information from the NASA NDE requirements as a courtesy to users. These flaw sizes may or may not be applicable to other industries or organizations. No warranty is made to the completeness or applicability of the NASGRO list to any specific application. Users are encouraged to verify the applicability of this information to their specific hardware:

• NASA users: consult your appropriate Fracture Control authority