Dynamic Modeling of Knee Mechanics, 18-R8167
Principal Investigators
Daniel P. Nicolella
W. Loren Francis
Travis Eliason
Baron Bichon
Inclusive Dates: 07/01/11 – Current
Background — Osteoarthritis (OA) is the most common form of arthritis and, as the major cause of activity limitation and physical disability in older people, is a tremendous public health concern. Arthritis causes pain, swelling, and reduced motion in joints caused by the breakdown or degradation of the articular cartilage covering the joint surfaces. While it is generally accepted that differences in knee mechanics or alterations in knee mechanics due to certain risk factors lead to knee OA, the precise dynamic mechanical environment of the knee and its anatomical structures during routine physical movements is largely unknown. Thus, a remaining unmet, technically difficult challenge in musculoskeletal research, and the focus of this project, is determining the detailed dynamic mechanical environment of the healthy knee joint and understanding alterations in knee mechanics caused by injury, aging or disease.
Approach — The primary objectives of this project are:
Develop a dynamic, finite element model of the lower human body driven by neuromuscular control and active contraction of the major muscle groups of the lower body.
Determine the dynamic neuromuscular control parameters for: i) leg extension, ii) standing squat, iii) single gait cycle and simultaneously determine the mechanical environment within the knee.
Determine the changes in knee mechanics resulting from known OA risk factors.
Accomplishments — In this project, SwRI researchers have used multibody dynamics, active muscle modeling, and detailed finite element modeling to generate a high fidelity dynamic model of the human lower body. Researchers explicitly modeled the lower limbs (pelvis down to the foot), including a detailed representation of the knee, using finite elements. Motion at the knee joint is controlled explicitly via deformable surface contact at each articular surface (rather than idealized as simple revolute or ball and socket joints). The major muscles activating the lower limb are explicitly modeled using anatomical muscle insertion points and geometric wrapping. The dynamic muscle forces, joint kinematics, contact forces, and detailed (e.g., continuum) stresses and strains within the knee (cartilage, meniscus, ligaments and bone) were simultaneously determined for a neuromuscularly controlled seated leg extension with a weight of 30 pounds added to the ankle. The simultaneous prediction of multibody dynamics and detailed continuum mechanics of the knee (or any other biological structure) under self-actuation (e.g., muscle activation) has not been previously performed.