Virtual-Vehicle Product DevelopmentAuto teams can save valuable time using award-winning RAPTOR® software By Scott McBroom
Coordinating design ideas and new concepts into components such as the engine, transmission and body must be handled in an efficient, timely manner so that the final product can be tested and showcased within its original budget and schedule. A major problem facing original equipment manufacturers (OEMs) is coordinating the overall development process across a multitude of engineering teams, which are inevitably at different stages in the process. This requires the development, communication and verfication of design, test and manufacturing data, which ultimately describes the final product. Southwest Research Institute (SwRI) has developed a commercial, off-the-shelf software program as an initial response to this need under the trademark of RAPTOR (Rapid Automotive Performance Simulator). RAPTOR is an application program written in Matlab®/Simulink® and allows powertrain components to be simulated in a virtual environment. Mathematical descriptions of vehicle powertrain components are assembled in software and simulated under various user-selectable driving schedules in a process of linking these powertrain components and sub-components from the engine to the wheels. RAPTOR allows automotive engineers then to analyze and optimize vehicle powertrain systems with regard to performance, efficiency and emissions production. This is a crucial step in powertrain product development. Co-developed with DaimlerChrysler in Auburn Hills, Mich., and recognized as one of the top 100 inventions in 2004 by R&D Magazine, the software was created for automotive and truck and bus manufacturers and their suppliers. RAPTOR makes the differenceAs a software tool, RAPTOR facilitates the parallel computer-aided engineering (CAE) of vehicles. Parallel CAE consists of design, co-simulation, analysis and hardware-in-the-loop (HIL) development activities. Co-simulation allows engineers working in different software packages to use the same reference vehicle models in a common computing environment. For example, an engineer using a high-fidelity cooling system model, such as Flowmaster21 could evaluate the impact of a design change on vehicle performance in conjunction with an engine controls engineer who is using a high-fidelity engine model coded in Fortran or C++. In each case, both engineers could be using the common RAPTOR back-plane, once the interfaces are developed. Another special feature RAPTOR offers is an integrated database that ensures configuration management of both models and data. Over the years, this has become a must for multi-user vehicle simulation activities. RAPTOR improves on competitive products primarily by incorporating a fully functional database for storing and synchronizing models, input data, simulation parameters and some key simulation results. Unlike competitive products, RAPTOR stores and manages both the data used for vehicle simulations and the Simulink models in the database. The current primary function of RAPTOR is to predict the performance of the vehicle and powertrain and to predict the loading that will result from operation over various drive cycles. This load information also can be used as input to the stress and fatigue analyses that are undertaken for the various powertrain components. RAPTOR also can be used to develop control algorithms and calibration constants in a virtual environment long before complete hardware sets exist. This development involves exercising the modeled components and actuation hardware in the simulated environment and evaluating the response of the overall system. Calibration of engines and transmissions to the 65 percent level is the target for software-based control system development, and this likely will be obtained within the next three to five years. Modeling and simulation also can be used to improve the evaluation and development of powertrain components. This is termed HIL testing and can involve electronic controllers, engines, transmissions and other powertrain components. HIL testing of transmissions already has been demonstrated at SwRI. Engineers at the Institute are now enhancing RAPTOR to perform engine HIL simulation. Electronic controller HIL simulation is also an ongoing activity. SwRI has proven for its clients that HIL evaluation allows performance to be optimized prior to assembly in a vehicle, which measurably reduces the product development time and cost.
RAPTOR bridges the gapSwRI's Advanced Vehicle Technology Section is undertaking a multi-year, focused effort called Virtual Vehicle Research and Development. RAPTOR is a large step in the concept that integrates every aspect of evaluation and development of vehicle design, analysis, evaluation and calibration. Ultimately, the goal behind the "model-to-vehicle" philosophy is to produce a vehicle that has been designed seamlessly in a virtual environment. This means that mixed-fidelity modeling is utilized in every facet of a vehicle system development cycle to predict and verify the operation of each subsystem before going into production. This would include both hardware functionality evaluation for power production, reliability and durability, as well as software performance for controllability, diagnostics and prognostics. This approach incorporates a number of engineering disciplines, and it is absolutely indispensable to ensure that information for the design is consistent, accurate, understandable, useful and accessible to every member of the design team in a seamless manner. Not only must performance issues be targeted at the beginning but also reliability issues must be predicted at an early stage. Manufacturing issues must be considered during conceptual design and analytical simulations, and calibration processes should be integrated into the modeling and simulation environment. Finally, location no longer should pose a problem as design teams in different continents will be able to work in unison.
ConclusionWith RAPTOR, component models and control strategies may be created, interchanged and simulated to predict real-world results from a virtual environment. RAPTOR can be used to evaluate new technologies and perform trade-off studies comparing these emerging technologies to existing equipment. Individual component models developed using RAPTOR can be used in conjunction with hardware testing to simulate virtually any driving, ambient or operational condition. A major automotive OEM has validated and begun to integrate RAPTOR into its design process, which has already provided them reductions in costs and time. RAPTOR's potential continues to be explored beyond its initial applications, expanding its capabilities and applications to meet our clients' needs in different areas of vehicle design, development and calibration. v Comments about this article? Contact Joe Redfield (210) 522-3729 or jredfield@swri.org. Reference Acknowledgments
Published in the Spring 2005 issue of Technology Today®, published by Southwest Research Institute. For more information, contact Joe Fohn. |