Southwest Research Institute®

KEYWORDS

Corrosion Testing

Fuel Analysis

Exposure Testing of Fuels

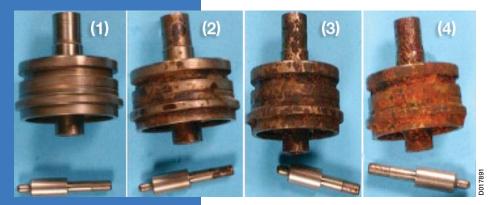
Failure Analysis

Slow Strain Rate Testing of Ethanol

Biodiesel

Ultra-low Sulfur Diesel

Stress Corrosion Cracking


Metallurgical and Chemical Testing

Characterization of Fuels

Investigation of Corrosion in Fuel Systems

idespread use of biodiesels and ultra-low sulfur diesel (ULSD) fuels has raised corrosion concerns in the engine manufacturing, fuel storage and regulatory communities. Biofuels derived from vegetable oils or animal fat age rapidly during storage, leading to the formation of aggressive species that react with storage tanks or engine parts, causing corrosion. With ethanol blends, water separation (for E5-E20) and stress corrosion cracking (E85) are the main concerns. ULSD is thought to be more corrosive than diesel fuels containing higher amounts of sulfur. Microbiologically induced corrosion (MIC) is also a potential problem in all fuel systems, since they provide a readily available food source to microorganisms, including bacteria and fungi.

Southwest Research Institute[®] (SwRI[®]) has been assisting government and industry in investigating corrosion and finding mitigation techniques for corrosion problems in fuel systems. The Environmental Performance of Materials Section has been a member of an API JIP program to investigate compositional effects that lead to stress corrosion cracking (SCC) in ethanol. The group participated in the development of a NACE Standard test to measure SCC that is currently under review (Slow Strain Rate Test Method for Evaluation of Ethanol Stress Corrosion Cracking in Carbon Steel).

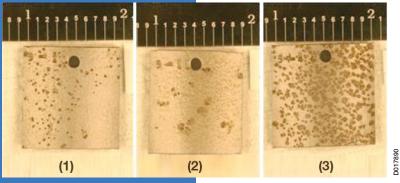
Test specimens exposed to ULSD fuels with different water contents. (1) No water; (2) 7,500 ppm distilled water; (3) 7,500 ppm tap water; (4) ULSD without additives + 105 ppm tap water.

7892

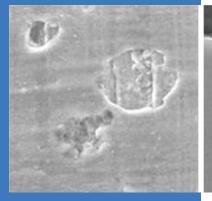
D017

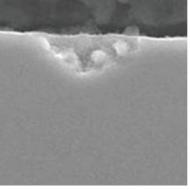
Low magnification microscope image of the inside surface of test specimen (4) showing corroded areas.

Fuel Analysis


The Fuels and Lubricants Division is equipped to fully characterize fuels in its analytical laboratory, including the following measurements:

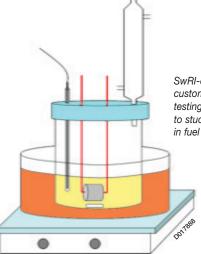
- Sulfur content
- Aromatics
- Distillation
- Acid number
- Density
- Conductivity
- DSEP (water separation characteristics)
- Karl-Fisher water content
- Rancimat storage stability
- Ethanol content
- Silver strip corrosion
- Interfacial tension


Exposure Tests and Corrosion Measurements


The Environmental Performance of Materials Laboratory performs exposure tests customized to each client's needs and environments. Temperature cycles are often used in these tests to mimic engine operating conditions.

Mass loss measurements and visual observations and rating according to ASTM D1654 are usually performed following the exposures. Depending on the water content of the mixture, electrochemical impedance of direct corrosion rate and electrochemical potential can be measured. Accelerated exposure tests according to NACE TM0172-2001 can also be performed.

Test coupons after conclusion of NACE TM0172-2001 test. The fuel samples came from the (1) top, (2) middle and (3) bottom portions of an underground storage tank.



Scanning electron microscopy to identify the type and extent of corrosion damage.

Failure Analysis

Failure analysis of corroded parts is performed in SwRI's Metallurgy and Chemistry Laboratories. Metallurgical and chemical tests include:

- Scanning electron microscopy
- Digital 3D microscopy
- Auger electron spectroscopy
- X-ray diffraction
- Infrared spectroscopy
- Atomic absorption spectroscopy
- Ion chromatography

SwRI-designed custom exposure testing apparatus to study corrosion in fuel systems.

Southwest Research Institute is an independent, nonprofit, applied engineering and physical sciences research and development organization using multidisciplinary approaches to problem solving. The Institute occupies 1,200 acres in San Antonio, Texas, and provides more than 2 million square feet of laboratories, test facilities, workshops and offices for more than 3,000 employees who perform contract work for industry and government clients.

We welcome your inquiries. For additional information, please contact: James F. Dante Manager (210) 522-5458 james.dante@swri.org

Research Engineer (210) 522-6559 florent.bocher@swri.org

Florent Bocher

D017889

Materials Engineering Department Mechanical Engineering Division

Southwest Research Institute 6220 Culebra Road • P.O. Drawer 28510 San Antonio, Texas 78228-0510

swri.org corrosiontechnology.swri.org

Benefiting government, industry and the public through innovative science and technology