SOUTHWEST RESEARCH INSTITUTE®

Pre-test Volume

Exhaust

Fuels and Lubricants Research Division

Sequence IVB Engine Test

(ASTM D8350)

Specifications

• ILSAC GF-6, API SP

Objective

• Evaluate the effect of an automotive lubricant on tappet wear for engines with direct-acting overhead cam valvetrains.

Test Fixture

 Toyota 2NRFE 1.5L fuel-injected, inline fourcylinder engine with dual overhead cam shafts and four valves per cylinder.

Test Parameters

- The test duration is 200 hours involving 24,000 thirty- second cycles, each cycle consisting of four stages: two steady-state stages with transition ramp stages between them.
- Unleaded Haltermann KA24E Green fuel is used.

Test Parts Evaluation

- The volume loss due to wear on each of the 16 bucket lifters is measured using a 3D macroscope. The mass loss of each lifter is also recorded.
- Average intake lifter wear volume and endof-test oil iron concentration are the primary evaluated parameters.

Used lubricant Analysis

- Karl Fischer water content (ASTM D6304)
- Viscosity @ 40°C (ASTM D445)
- Acid number (ASTM D664)
- Fuel dilution (ASTM D3525)
- Base number (ASTM 4739)
- Wear metals (ASTM D5185)
- Oxidation and nitration (FTIR peak area)

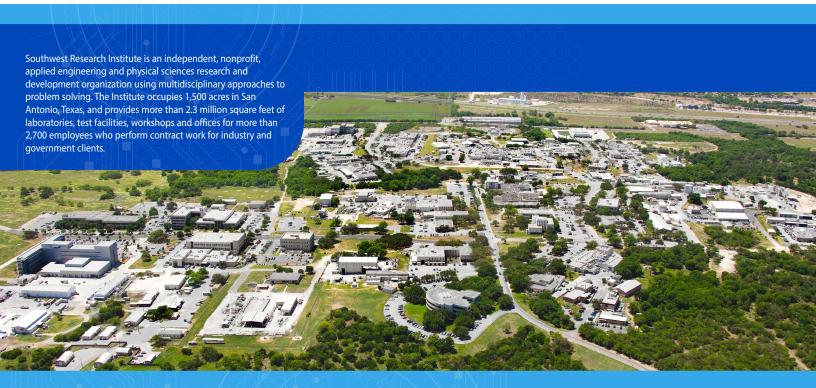
Intake Intake

Post-test Volume

Test Condition	Stage 1	Ramp 1 to 2	Stage 2	Ramp 2 to 1
Time, seconds	7	8	7	8
Engine speed, rpm	800	800 to 4300	4300	4300 to 800
Engine torque, Nm	25	25	25	25
Engine coolant-in temp, °C	49	49	49	49

Pass/Fail Criteria

- Maximum average intake lifter volum loss of 2.7 mm³
- Maximum end-of-test iron of 400 ppm


lubricanttesting.swri.org

We welcome your inquiries. For additional information, please contact:

Khaled Rais Research Engineer 210.522.3842 khaled.rais@swri.org

Fuels and Lubricants Research Division

Southwest Research Institute 6220 Culebra Road • P.O. Drawer 28510 San Antonio, Texas 78228-0510

Benefiting government, industry and the public through innovative science and technology

210.522.2122

ask@swri.org

Like. Share. Follow. Listen.

swri.org