Advanced science.  Applied technology.


Nondestructive Testing of Stress in a Ferromagnetic Structural Material Utilizing Magnetically Induced Velocity Change Measurements: 4,497,209


This disclosure relates to a nondestructive method of measuring stress in a ferromagnetic structural material. One method involves the measurement of the change in ultrasonic velocity induced by an externally applied magnetic field; the method enables nondestructively determining the magnitude, the direction, and the sign (i.e., tensile or compressive) of a stress in a ferromagnetic material. The magnetically induced velocity change of an ultrasonic wave is caused by the magnetoelastic coupling in the ferromagnetic material. This magnetically induced velocity change is characteristically dependent on the magnitude and the sign of the stress and also on the relative orientation of the stress, the magnetic field, and the polarization and propagation direction of the ultrasonic wave. The dependence of magnetically induced velocity changes can be utilized for nondestructive stress measurements. In one version, for measuring bulk stresses, either a longitudinal ultrasonic wave or a shear ultrasonic wave is used. In another version, for measuring surface stresses, a surface ultrasonic wave is preferably used. By using surface waves at several different frequencies, a stress gradient can also be determined.

Patent Number: 
Date Of Issue: 

Hegeon Kwun; Cecil M. Teller