Food Technology: Formulation, Analysis, Engineering

Southwest Research Institute® (SwRI®) has been a leader in food-related science and engineering fields for more than 60 years. Support of the food processing and manufacturing industries is a core focus, and SwRI engineers have developed diverse solutions for food manufacturers and processing equipment suppliers using innovative techniques.

Institute staff members have developed and applied technologies to food-related applications and technologies, including:

Formulation
- Micro/nanoencapsulation and particle engineering
- Nanomaterials
- Antimicrobial materials

Analysis
- Analytical chemistry
- Testing and failure analysis

Engineering
- Materials engineering for food applications
- Manufacturing systems

Using extensive expertise in diverse technical fields such as pharmaceuticals, food and nutrition, polymer and materials science, and process engineering, SwRI has been a leader in encapsulation research and development for more than 60 years. Institute encapsulation specialists solve product stability, release and application problems in a wide range of industries. The Institute has conducted more than 1,000 encapsulation research programs for commercial and government clients, preparing capsules 10 nm to 10 mm with a wide range of materials. SwRI employs diverse bench and pilot-scale encapsulation methods to solve product performance requirements for its clients. Encapsulation methods are broadly categorized as either physical or chemical.

Physical Methods
- Extrusion/co-extrusion
- Fluidized bed
- Pan coating
- Atomization
- Spinning disk
- Spray drying
- Spray chilling/congealing

Chemical Methods
- Solvent evaporation
- Coacervation/phase separation
- Interfacial/in-situ polymerization
- Nanocapsulation
- Micelles
- Nanemulsions
- Liposomes
- Sol-gel

Facilities
- ISO 9001:2008
- Good Manufacturing Practices (cGMP)
- Lab- and pilot-scale encapsulation

Encapsulation Formulation and Release
- Shell materials: GRAS, kosher
- Custom release rates and/or profiles
- Release mechanism examples
 - mechanical rupture
 - thermal release
 - permeation
 - shell dissolution
 - pH trigger
 - biodegradation

Capsule Analysis
- Spectroscopy/chromatography
- Payload
- Content uniformity and stability
- Release profiles
- Ingredient activity
- Optical/electron microscopy
- Particle size analysis (3 nm to 3 mm)
- Zeta-potential analysis
- Surface analysis (AFM, EDX)
- Thermal analysis (DSC, TGA)

Food Application Examples
- Functional foods
- Taste masking
- Color masking
- Flavor stabilization
- Oxidation stability
- Shelf life improvement
- Formulation stability
- Liquid-to-solid conversion

The Institute employs a number of chemical methods to develop highly stable microcapsules as small as 100 nm.

©2019 Southwest Research Institute. All rights reserved.
Southwest Research Institute® (SwRI®) has been a leader in food-related science and engineering fields for more than 60 years. Support of the food processing and manufacturing industries is a core focus, and SwRI engineers have developed diverse solutions for food manufacturers and processing equipment suppliers using innovative techniques.

Institute staff members have developed and applied technologies to food-related applications and technologies, including:

Formulation
- Micro/nanoencapsulation and particle engineering
- Nanomaterials
- Antimicrobial materials

Analysis
- Analytical chemistry
- Testing and failure analysis

Engineering
- Materials engineering for food applications
- Manufacturing systems

Physical Methods
- Extrusion/co-extrusion
- Fluidized bed
- Pan coating
- Atomization
- Spinning disk
- Spray drying
- Spray chilling/congealing

Chemical Methods
- Solvent evaporation
- Coacervation/phase separation
- Interfacial/in-situ polymerization
- Nanocapsulation
- Micelles
- Nanemulsions
- Liposomes
- Sol-gel

Facilities
- ISO 9001:2008
- Good Manufacturing Practices (cGMP)
- Lab- and pilot-scale encapsulation

SwRI scientists develop encapsulated products for agricultural applications such as sustained release of pesticides and fertilizers, stabilization, and increased bioavailability of animal feed nutrients and seed protection.

The Institute employs a number of chemical methods to develop highly stable microcapsules as small as 100 nm.

Particle size and morphology can be tailored to achieve the desired product performance.
Nanotechnology

Nanotechnology is a diverse field, united only by the factor of scale. At SwRI, multidisciplinary teams of scientists and engineers bring together advanced technologies on the smallest of scales to provide solutions to large and small problems.

Institute scientists use advanced engineering and fundamental chemistry, physics and materials sciences, along with innovative computational capabilities, to solve specific problems in molecular modeling, nanomanipulation and fabrication, molecular templating and processing.

SwRI has well-equipped laboratories, facilities and equipment, including scanning electron microscopes, a focused ion beam mill and silicon water-handling equipment. Drawing upon expertise in numerous fields, Institute engineers offer services in design engineering, training and virtual data manipulation, fabrication and characterization.

The Institute provides solutions in nanosciences including:

- Nanocomposites
- Nanencapsulation
- Nanomaterials
- Nanofabrication
- Nanosensors

SwRI scientists develop microcapsules containing nanoplatelet fillers at the shell wall to provide oxygen- and water-barrier properties. These fillers enable development of next-generation nutritional and functional food products such as fish oil.

SwRI scientists conduct a variety of nutritional analyses including water and fat-soluble vitamins, amino acids, fatty acids, sugars and carbohydrates, proteins, and cholesterol determinations.

SwRI has extensive experience in the determination of contaminants and unknowns. Other services include support analyses for research and development, production and quality assurance groups.

Institute scientists develop new methodology as needs arise. SwRI currently offers services for the determination of melamine and cyanuric acid in various food matrices, acrylamide and its precursors in baked and fried foods, and have designed leaching studies for the determinations of bisphenol A and phthalates in a variety of products.

SwRI specializes in providing unconventional problem solving. Past experience includes analyzing flavors and colors, evaluating the effects of storage conditions on produce shelf life and food contamination, and evaluating in-home preparation of produce on remaining levels of pesticides. Instrumentation available for these analyses include LC/MS/MS, HPLC, HRGC/MS, LRGC/MS, GC, GCXGC, ICP-MS, ICP, CE, IC and all wet chemistry and gravimetric equipment and procedures.

Laboratory Accreditations

- ISO 9001:2008
- NELAP – National Environmental Laboratory Accreditation Program
- Food and Drug Administration (FDA) registration
- Drug Enforcement Administration (DEA) Schedules I-V (Researcher I-V; Manufacturer III-V)

SwRI uses top-of-the-line molecular modeling systems for applying computational methods to aid in understanding protein and ligand interactions and new compound designs, such as this molecular model of a transmembrane protein.

Exposure to light instantly activates ClO2 production of an SwRI-licensed technology, eliminating microbes and pathogens and neutralizing undesirable odors. By removing or decreasing light, the release of ClO2 may be reduced or stopped.

Analytical Services

Using state-of-the-art laboratories, Institute scientists have a wide range of experience in nutritional analyses including water and fat-soluble vitamins, amino acids, fatty acids, sugars and carbohydrates, proteins, and cholesterol determinations. SwRI provides fast-turnaround analyses for pesticide residues and offers state-of-the-art capabilities in metals determination. SwRI scientists have extensive experience in the determination of contaminants and unknowns. Other services include support analyses for research and development, production and quality assurance groups.

Institute scientists develop new methodology as needs arise. SwRI currently offers services for the determination of melamine and cyanuric acid in various food matrices, acrylamide and its precursors in baked and fried foods, and have designed leaching studies for the determinations of bisphenol A and phthalates in a variety of products.

SwRI specializes in providing unconventional problem solving. Past experience includes analyzing flavors and colors, evaluating the effects of storage conditions on produce shelf life and food contamination, and evaluating in-home preparation of produce on remaining levels of pesticides. Instrumentation available for these analyses include LC/MS/MS, HPLC, HRGC/MS, LRGC/MS, GC, GCXGC, ICP-MS, ICP, CE, IC and all wet chemistry and gravimetric equipment and procedures.

Laboratory Accreditations

- ISO 9001:2008
- NELAP – National Environmental Laboratory Accreditation Program
- Food and Drug Administration (FDA) registration
- Drug Enforcement Administration (DEA) Schedules I-V (Researcher I-V; Manufacturer III-V)

SwRI analysts prepare food samples for extraction in one of the Institute’s state-of-the-art laboratories. SwRI scientists conduct a variety of nutritional analyses including water and fat-soluble vitamins, amino acids, fatty acids, sugars and carbohydrates, proteins, and cholesterol determinations.

SwRI scientists have extensive experience in the determination of contaminants and unknowns. At right, produce is in the pesticide analysis process.

Sample extracts on a gas chromatograph/mass spectrometer instrument are ready to be analyzed.

SwRI scientists conduct a variety of nutritional analyses including water and fat-soluble vitamins, amino acids, fatty acids, sugars and carbohydrates, proteins, and cholesterol determinations.
SwRI scientists use top-of-the-line molecular modeling systems for applying computational methods to aid in understanding protein and ligand interactions and new compound designs, such as this molecular model of a transmembrane protein.

Nanotechnology

Nanotechnology is a diverse field, united only by the factor of scale. At SwRI, multidisciplinary teams of scientists and engineers bring together advanced technologies on the smallest of scales to provide solutions to large and small problems.

Institute scientists use advanced engineering and fundamental chemistry, physics and material sciences, along with innovative computational capabilities, to solve specific problems in molecular modeling, nanomanipulation and fabrication, molecular templating and processing. SwRI has well-equipped laboratories, facilities and equipment, including scanning electron microscopes, a focused ion beam mill and silicon wafer-handling equipment. Drawing upon expertise in numerous fields, institute engineers offer services in design engineering, training and virtual data manipulation, fabrication and characterization.

The Institute provides solutions in nanosciences including:

- Nanocomposites
- Nanencapsulation
- Nanomaterials
- Nanofabrication
- Nanosensors

SwRI scientists develop microcapsules containing nanoplatelet fillers at the shell wall to provide oxygen- and water-barrier properties. These fillers enable development of next-generation nutritional and functional food products such as fish oil.

Analytical Services

Using state-of-the-art laboratories, Institute scientists have a wide range of experience in nutritional analyses including water and fat-soluble vitamins, amino acids, fatty acids, sugars and carbohydrates, proteins, and cholesterol determinations. SwRI provides fast-turnaround analyses for pesticide residues and offers state-of-the-art capabilities in metals determination. SwRI scientists have extensive experience in the determination of contaminants and unknowns. Other services include support analyses for research and development, production and quality assurance groups.

Institute scientists develop new methodology as needs arise. SwRI currently offers services for the determination of melamine and cyanuric acid in various food matrices, acrylamide and its precursors in baked and fried foods, and have designed leaching studies for the determinations of bisphenol A and phthalates in a variety of products.

SwRI specializes in providing unconventional problem solving. Past experience includes analyzing flavors and colors, evaluating the effects of storage conditions on produce shelf life and food contamination, and evaluating in-home preparation of produce on remaining levels of pesticides. Instrumentation available for these analyses include LC/MS/MS, HPLC, HRGC/MS, LRGCMS, GC/MS/MS, GC, GCXGC, ICP-MS, ICP, CE, IC and all wet chemistry and gravimetric equipment and procedures.

Laboratory Accreditations

- ISO 9001:2008
- NELAP – National Environmental Laboratory Accreditation Program
- Food and Drug Administration (FDA) registration
- Drug Enforcement Administration (DEA) Schedules I-V (Researcher I-V; Manufacturer III-V)

Instrumentation available for these analyses include LC/MS/MS, HPLC, HRGC/MS, LRGCMS, GC/MS/MS, GC, GCXGC, ICP-MS, ICP, CE, IC and all wet chemistry and gravimetric equipment and procedures.

Laboratory Accreditations

- ISO 9001:2008
- NELAP – National Environmental Laboratory Accreditation Program
- Food and Drug Administration (FDA) registration
- Drug Enforcement Administration (DEA) Schedules I-V (Researcher I-V; Manufacturer III-V)

SwRI analysts prepare food samples for extraction in one of the Institute’s state-of-the-art laboratories. SwRI scientists conduct a variety of nutritional analyses including water and fat-soluble vitamins, amino acids, fatty acids, sugars and carbohydrates, proteins, and cholesterol determinations.

SwRI scientists conduct nutritional analyses including water and fat-soluble vitamins, amino acids, fatty acids, sugars and carbohydrates, proteins, and cholesterol determinations.

Exposure to light instantly activates ClO₂ production of an SwRI-licensed technology, eliminating microbes and pathogens and neutralizing undesirable odors. By removing or decreasing light, the release of ClO₂ may be reduced or stopped.

SwRI scientists have extensive experience in the determination of contaminants and unknowns. At right, produce is in the pesticide analysis process.
SwRI technical staff provides professional engineering services in the development and transfer of technology solutions for production operations. The Institute develops and deploys diverse solutions for food manufacturers and processing equipment suppliers. Typically, projects are instigated by new product or process development, cost reduction, improved quality of existing products, higher capacity processing systems and better equipment reliability.

Core manufacturing systems capabilities include:

- Production system development
- Operations improvement
- Automation solutions
- Inspection systems
- Sustainability and conservation
- Independent verification and validation

Production system development activities range from optimizing an existing process for a revised formulation to new equipment development and process specification. SwRI designs, builds and validates a broad range of equipment and transfers the resulting technology to the end-user or a vendor of choice.

SwRI provides a suite of services in lean manufacturing, six-sigma, process modeling and quality systems. These operations improvement services range from single-day training or focused events to full plant value-engineering activities.

Automation solutions range from robotic applications that include material handling, palletizing and dispensing to developing custom automation equipment using a rigorous design methodology that is focused on meeting client requirements.

Typical approaches in nondestructive inspection of raw materials, finished products and packaging include machine vision, spectral analysis, X-ray, laser sensing and 3D scanning.

High energy food processing systems often can yield large benefits from sustainability and conservation measures and waste stream reduction or reuse. SwRI has created a holistic approach to identifying and prioritizing potential resource conservation measures.

SwRI provides independent assessment of a system’s performance and conducts trade studies to identify and rank equipment solutions. SwRI can be engaged proactively to help identify opportunities to reduce risk and anticipate failure modes.

SwRI engineers use computational modeling such as finite element analysis (FEA) and computational fluid dynamics (CFD) to optimize both existing and new equipment designs.

SwRI often develops pilot-scale equipment, such as this servo-driven cutter, for product development and process improvement.

SwRI provides independent engineering assessment of the course of the investigation, confirmed that this leak developed after 25 years of service. Various optical and scanning electron microscope images, taken in the course of the investigation, confirmed that this leak resulted from a slow-growing stress corrosion crack that initiated at a weld defect.

Materials Engineering

Institute specialists in materials processing work closely with testing and characterization experts to rapidly develop new materials that can be safely used in direct contact with food. SwRI has more than 5,000 square feet of state-of-the-art facilities and more than 10 vacuum chambers dedicated to surface modification and coatings of advanced materials with capabilities that include:

- Deposition techniques to enhance surface properties
- Plasma enhanced magnetron sputtering (PEMS)
- Plasma immersion ion deposition (PIID)
- Ion beam assisted deposition (IBAD)
- Wet chemistry based technologies
- Materials characterization including atomic force microscopy (AFM), fiber optic probes, Raman spectrometers and infrared spectrometers
- Unique materials such as diamond-like carbon (DLC), nanocomposite TiSiCN, TiN, CrN and carbon nanotubes (CNTs)

Projects range from small-batch, single-day processing to long-term research and development including friction and wear reduction in metal and ceramic components, biocompatible and catalytic coatings for polymeric materials, and treatments for corrosion and oxidation resistance.

Evaluation and Failure Analysis

Using systematic failure analysis, SwRI’s materials science and failure analysis teams often can isolate causes of catastrophic and minor failures. SwRI engineers and laboratory technicians have extensive experience in identifying failure mechanisms including:

- High- and low-cycle fatigue
- Stress corrosion cracking
- High-temperature degradation
- Brittle failure
- Fretting and wear
- Weld defects
- Various forms of corrosion attack

When failure investigations require in-depth studies, SwRI applies:

- Corrosion evaluation
- Nondestructive evaluation
- Finite element analysis
- Damage tolerance assessment
- Life extension forecasts
- Mechanical testing
- Metrology lab
- Surface engineering
- In-service condition assessment
- Maintenance optimization
- Design/redesign services

SwRI

SwRI technical staff provides professional engineering services in the development and transfer of technology solutions for production operations. The Institute develops and deploys diverse solutions for food manufacturers and processing equipment suppliers. Typically, projects are instigated by new product or process development, cost reduction, improved quality of existing products, higher capacity processing systems and better equipment reliability.
Manufacturing Systems

SwRI technical staff provides professional engineering services in the development and transfer of technology solutions for production operations. The Institute develops and deploys diverse solutions for food manufacturers and processing equipment suppliers. Typically, projects are instigated by new product or process development, cost reduction, improved quality of existing products, higher capacity processing systems and better equipment reliability.

Core manufacturing systems capabilities include:
- Production system development
- Operations improvement
- Automation solutions
- Inspection systems
- Sustainability and conservation
- Independent verification and validation

Production system development activities range from optimizing an existing process for a revised formulation to new equipment development and process specification. SwRI designs, builds and validates a broad range of equipment and transfers the resulting technology to the end-user or a vendor of choice.

SwRI provides a suite of services in lean manufacturing, six-sigma, process modeling and quality systems. These operations improvement services range from single-day training or focused events to full plant value-engineering activities.

Automation solutions range from robotic applications that include material handling, palletizing and dispensing to developing custom automation equipment using a rigorous design methodology that is focused on meeting client requirements.

Typical approaches in nondestructive inspection of raw materials, finished products and packaging include machine vision, spectral analysis, X-ray, laser sensing and 3D scanning.

High energy food processing systems often can yield large benefits from sustainability and conservation measures and waste stream reduction or reuse. SwRI has created a holistic approach to identifying and prioritizing potential resource conservation measures.

SwRI provides independent assessment of a system’s performance and conducts trade studies to identify and rank equipment solutions. SwRI can be engaged proactively to help identify opportunities to reduce risk and anticipate failure modes.

Materials Engineering and Failure Analysis

Materials Engineering

Institute specialists in materials processing work closely with testing and characterization experts to rapidly develop new materials that can be safely used in direct contact with food. SwRI has more than 5,000 square feet of state-of-the-art facilities and more than 10 vacuum chambers dedicated to surface modification and coatings of advanced materials with capabilities that include:
- Deposition techniques to enhance surface properties
- Plasma enhanced magnetron sputtering (PEMS)
- Plasma immersion ion deposition (PIID)
- Ion beam assisted deposition (IBAD)
- Wet chemistry based technologies
- Materials characterization including atomic force microscopy (AFM), fiber optic probes, Raman spectrometers and infrared spectrometers
- Unique materials such as diamond-like carbon (DLC), nanocomposite TiSiC, TiN, CrN and carbon nanotubes (CNTs)

Projects range from small-batch, single-day processing to long-term research and development including friction and wear reduction in metal and ceramic components, biocompatible and catalytic coatings for polymeric materials, and treatments for corrosion and oxidation resistance.

Evaluation and Failure Analysis

Using systematic failure analysis, SwRI’s materials science and failure analysis teams often can isolate causes of catastrophic and minor failures. SwRI engineers and laboratory technicians have extensive experience in identifying failure mechanisms including:
- High- and low-cycle fatigue
- Stress corrosion cracking
- High-temperature degradation
- Brittle failure
- Fretting and wear
- Weld defects
- Various forms of corrosion attack

When failure investigations require in-depth studies, SwRI applies:
- Corrosion evaluation
- Nondestructive evaluation
- Finite element analysis
- Damage tolerance assessment
- Life extension forecasts
- Mechanical testing
- Metrology lab
- Surface engineering
- In-service condition assessment
- Maintenance optimization
- Design/redesign services

The figures show highlights of a failure investigation that started with an active leak in a socket weld that developed after 25 years of service. Various optical and scanning electron microscopy images, taken in the course of the investigation, confirmed that this leak resulted from a slow-growing stress corrosion crack that initiated at a weld defect.
Benefiting government, industry and the public through innovative science and technology

We welcome your inquiries. For additional information, please contact:

Microencapsulation and Nanotechnology
James Oxley, Ph.D., Staff Scientist
Pharmaceuticals and Bioengineering Department
Chemistry and Chemical Engineering Division
210.522.2913 • Fax 210.522.4565
james.oxley@swri.org
microencapsulation.swri.org

Manufacturing Technologies
Cody Porter, Group Leader-R&D
Manufacturing and Robotics Technologies Department
Intelligent Systems Division
210.522.6636 • Fax 210.522.5499
cody.porter@swri.org
manufacturing.swri.org

Analytical Systems
Lorraine Scheller, Manager
Analytical and Environmental Chemistry Department
Chemistry and Chemical Engineering Division
210.522.2182 • Fax 210.522.3649
lorraine.scheller@swri.org
foodtest.swri.org