The performance of materials at high strain rates is of interest for various applications (e.g., structural, military and sports). Southwest Research Institute® (SwRI®) has a long history in characterizing the high strain rate response of materials. The SwRI High Rate Test Laboratory housing the Split-Hopkinson pressure bar apparatus has been designated an ASME Historic Mechanical Engineering Landmark, based on pioneering work in the 1960s that allowed direct generation of the complete stress-strain curve for a single impact.

The SwRI High Rate Test Laboratory is equipped with instrumentation for measuring, recording and analyzing test data for strain rates approaching 5000 s⁻¹. High-speed imaging systems are available to record the high rate response. Lab capabilities include high rate testing in tension, compression, torsion and three-point bend. Microstructural characterization of tested material can be accomplished to determine deformation and failure mechanisms. The facility is staffed with experienced personnel who can adapt test conditions to meet unique requirements.

Dynamic Test Capability
- Tension (ε ≤ 2 × 10⁳ s⁻¹)
- Compression (ε ≤ 5 × 10³ s⁻¹)
- Torsion (ε ≤ 2 × 10² s⁻¹)
- Fracture toughness
- Taylor impact (ε ~10⁵ s⁻¹)

Materials Testing Experience
- Armor materials
- Blast-resistant materials
- Metals
- Ceramics
- Glass, Rocks and soils
- Powders/granular materials
- Biological materials (tendons, ligaments, bone)
- Porous/foam materials
- Polymers
- Fiber composites
- Fabrics
- Concrete

Materials Characterization
- Deformation response: stress-strain curves
- Strain rate effects
- Failure mechanism determination
- Shear and delamination testing
- Dynamic deformation and displacement measurements
- Fracture
- Constitutive model development
- Determination of Johnson-Cook model constants
Dynamic Test Equipment
- Split-Hopkinson pressure bar systems
 - Compression
 - Tension (direct, indirect)
 - Environments: vacuum, air, Ar, N
 - High temperature (≤ 1000°C)
- High-speed torsion actuator
- High-speed data acquisition system
- High-speed imaging systems (up to 10⁶ frames/second)
- High-speed strain gage amplifiers
- Displacement mapping system for 3-D dynamic strain measurements
- Confining pressure apparatus (≤ 500 MPa)

Support Capabilities and Facilities
- Numerical simulations of experiments (LS-DYNA, CTH, EPIC)
- Metallurgical laboratory
 - Optical and scanning electron microscopy
 - Energy dispersive spectroscopy
 - Auger spectroscopy
 - X-ray diffraction
- Ballistics and explosives range
- Mechanical test laboratory
 - Low strain rate material characterization
 - Tri-axial compression and extension
 - High-temperature testing
 - Testing in extreme environments
 - Customized testing
- Full-service machine shop

We welcome your inquiries. For more information, please contact:

Sidney Chocron, Ph.D.
Senior Research Engineer
210.522.3698
schocron@swri.org

James D. Walker, Ph.D.
Director
210.522.2051
jwalker@swri.org

Engineering Dynamics Department
Mechanical Engineering Division
ballistics.swri.org

Southwest Research Institute is a premier independent, nonprofit research and development organization using multidisciplinary services to provide solutions to some of the world’s most challenging scientific and engineering problems. Headquartered in San Antonio, Texas, our client-focused, client-funded organization occupies 1,200 acres, providing more than 2.3 million square feet of laboratories, test facilities, workshops, and offices for more than 2,600 employees who perform contract work for government and industry clients.

An Equal Employment Opportunity/Affirmative Action Employer
Race/Color/Religion/Sex/Sexual Orientation/Gender Identity/National Origin/Disabled/Veteran
Committed to Diversity in the Workplace

©2019 Southwest Research Institute.
All rights reserved.

Like. Share. Follow. Listen.

swri.org