SWRI GEMS Workshop

sc-CO2 as Working Fluid
11/19/2024

Prof. Mayank Tyagi
Louisiana State University
mtyagi@Isu.edu



LSU to drill carbon capture research well on
.. campus
O PPRO rtunities to X inY ¢ J=XoX6)
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B LSU's Petroleum Engineering Research, Training and Testing Lab (LSU Engineering photo)

LSU’s College of Engineering will soon drill a new well on campus to research carbon capture, utilization
and storage (CCUS).

The well will be added to LSU’s Petroleum Engineering Research, Training and Testing Lab, a hands-on
research facility near Alex Box Stadium made up of two industrial-scale research wells, additional storage
wells and surface facilities.



CO, Phase Diagram and Power Cycles - Overview

Credit: Wikimedia Commons
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Supercritical CO, Power Technology: Strengths but Challenges

Michel Moliére 1'%*, Romain Privat !, Jean-Noél Jaubert 10 and Frédéric Geiger *

Energies 2024, 17, 1129. https:/ /doi.org/10.3390/en17051129
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Fig. 1. Variation in thermophysical properties of CO, in the supercritical region at different pressures [12]: (a) density, (b) specific heat, (c) thermal conductivity, (d) viscosity.

Experimental comparison of the heat transfer of carbon dioxide under

subcritical and SU[JEI'CI'itiC&l pressures International Journal of Heat and Mass Transfer 152 (2020) 119562

Xianliang Lei®*, Ruifeng Peng?, Ziman Guo®, Huixiong Li% Kashif Ali¢, Xu Zhou"
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Fig. 15. Experimental data for friction coefficient of various roughness and calcula-

tion curve of Eq. (12).
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Fig. 16. Different experimental data points for friction coefficients with various
Reynolds numbers and the calculation curve of Eq. (13).

(1) Temperature and pressure have impacton density and viscosity
0of SC-COy, furthermore, influence Re, making it change abruptly
near the critical point. But Re can reflect variation of physi-
cal property parameter comprehensively, function A =f(Re) can
still be used to determine the friction coefficient of SC-CO,.

(2) The friction coefficient of SC-CO; in the laminar region is
lowered as the Reynolds number increases, the experimental
relationship between A and Re corresponds with the relation
in equation A=64/Re, with the relative average error —1.1%,
absolute average error 2.39%.

(3) The friction coefficient of SC-CO, in the transition region
increases as the Reynolds number does. Five relations of fric-
tion coefficient are compared with the experimental data. The
absolute average errors of 5 formulae are high, and not suitable
for calculating SC-CO- friction coefficient. Modified calculation
model for SC-CO,, friction coefficient in the transition region
is set up by regression, of which the absolute average error is
2.81%.

(4) The friction coefficient of SC-CO, in the turbulent flow region
is reduced as the Reynolds number increases, and it becomes
flat at last. 15 relations of friction coefficient are compared with
the experimental data, and calculation values are lower than the
experimental data. Take formula Colebrook-White as a repre-
sentative one, the error is bigger within low Reynolds region
(3400<Re<11,000). According to experimental data, the mod-
ified model for calculation of friction coefficient in the turbulent
flow region is proposed with the absolute average error 1.94%,
which can apply in practice conveniently.

Experimental study on the friction coefficient of supercritical carbon
dioxide in pipes

Zhiyuan Wang*, Baojiang Sun, Jintang Wang, Lei Hou

International Journal of Greenhouse Gas Control 25 (2014) 151-161



Frictional Pressure Loss as a function of flowrate and pipe diameter

() = ez po9_4 Ap pv: @
ALJp 72D A nD? - Hf_ 2D D5
For same Reynolds’ number (Halving the flowrate in half of
the pipe diameter flow path), we can assume friction factor
to be 0.03 for fully turbulent case.
Case A: ID ~ 12”,2Q Case A pressure loss ~ 1/8 (Case B pressure loss)

If we choose to flow the double flowrate in one pipe for
Case B

Case B:ID ~5.5”, Q
Case A pressure loss ~ 1/32 (Case B pressure loss)

Therefore, it supports our design for flowing through large
diameter pipe in the production well.



How to Select Turbomachinery

For Your Application

Barber @
Nichols

The Seven Variables Are:

S

N

Hs

or

Rate of Volume Flow

Head Change Through Machine

Rotational Speed
Rotor Diameter

Fluid Density
Absolute Fluid Viscosity

Net Positive Suction Head

Speed of Sound in Fluid

by~ B

N— N- Q3”2 N = Rotational Speed (rpm)
COH Q; = Rotor Flow Rate (ft*/sec)
_D-H H., = Adiabatic Head (ft)

i 012 D = Diameter (ft)

The Turbine Hydraulic Efficiency as Derived From the Momentum Equation is:

I
7 7 72
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Nu= Wy Al=p-cosa——+y -cosf - p+y - (l-p)——— -y, -\l-p-cosa+—
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Where: U7 = Rotor Tip Speed (ft/sec)
Co Isentropic Spouting Velocity (ft/sec)
Py = Nozzle Velocity Coefficient

Yr = Rotor Velocity Coefficient
p = Reaction Fraction
o = Nozzle Angle

f; = Rotor Exit Blade Angle

The Reynolds Number for Turbines is Defined as:

D, -W,-p,-3600
Hy

Re =

Where: D, = Blade Passage Hydraulic Diameter (ft)
W, = Blade Inlet Relative Velocity (ft/sec)
p> = Blade Inlet Density (Ib/ft’)
> = Blade Inlet Viscosity (Ib/ft-hr)
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NgDg pump chart
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A single wellbore geothermal energy
conversion system using downhole heat
exchanger with zero mass withdrawal
concepf
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PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering
Stanford University, Stanford, California, February 11-13, 2013
SGP-TR-198

M t. t. GEOTHERMAL ENERGY: THE ENERGY-WATER NEXUS
o qu I o n Christopher Harto, Jenna Schroeder, Lou Martino, Robert Horner and Corrie Clark
. ) All Freshwater Availability, 2030 Total Water Availability, 2030

to wet or hybrid systems; however they come at a HUC2 Regions 10-18, by HUC4 Subregions HUC2 Regions 10-19, by HUC4 Subregions

cost of an energy penalty that increases when power
1s the most valuable in the summer. Flash plants
typically use condensate to run wet cooling systems,
however this comes at a cost of reduced reservoir
sustainability. Supplemental injection programs can
extend the life of the reservoir but consume large
quantities of water relative to other electric
generation technologies. The large resource base for
enhanced geothermal systems (EGS) represents a
major__opportunity for_the geothermal _industry:
however, depending upon geology, these systems can
be quite “thirsty” and require large quantities of
make-up water due to below ground reservoir losses.
Identifying potential sources of compatible degraded
or low quality water for use for make-up injection for

EGS angl flash systems represents an important Al Freshwater Availabilty Tota Wetr Avadaily

opportunity to reduce the impacts of geothermal (in million AFY) W B

development on fresh water resources. The =;ff°2%§:fo B o102 [ 5-10 N
importance of identifying alternative water sources N 02-05 I vo-0 A 522?52;22 A

for geothermal is heightened by the fact th S e W

or geothermal systems is heightened by the fact that vz o e ear e e

a large fraction of the geothermal resource is located
in areas already experiencing water stress.

Figure 3: Water Availability Metrics Developed by Sandia National Laboratories (Source: Tidwell 2012):
Freshwater Availability (left) and Total Water Availability (right)
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Fig. 2. Global geothermal installed capacity map, based on published data (Appendix A-F) at the point of preparing this work (early 2020) (created by using Someka R
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Background
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2011

Modehng effects of coupled convection and CO2
injection in stimulating geopressured geothermal
reservoirs

Tatyana Plaksina
Louisiana State University and Agricultural and Mechanical College
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Figure 6.8: CO, injection with heat extraction and an additional dynamic control well 1.
Snapshot of liquid CO, mass fraction is taken after 30 years of injection. The supercritical
gas mixes with geolfuid faster. This leads to lower gas concentration and prevents formation
of the plume. The reservoir is a 2D geomodel with length of 4000 m, width of 100 m, and
height of 200 m (with 10-fold exaggeration in z-direction). Permeability is 1 D and porosity
is 0.2. Gas injection rate is 0.003 kg/s. The plot’s legend represents mass fraction of liquid
COs (no gas phase).



DOE-GTP Project

upported 4 PhDs and 1 MS. Project built upon the initial research ideas presented in 1 MS (Plaxina) and

PhD (Feng).

DE-EE0005125
Louisiana State University
FY2016, Final

Final Research Performance Progress Report
Federal Agency and Organization: DOE EERE — Geothermal Technologies Program

Recipient Organization: Louisiana State University and A&M College
DUNS Number: 075050765
Recipient Address: Patricia M. Territo, Director
Sponsored Program Accounting Office
Louisiana State University and A & M College
336 Thomas Boyd Hall
Baton Rouge, Louisiana 70803-2901

Award Number: DE-EE0005125
Project Title: Geothermal Resource Development with Zero Mass Withdrawal, Engineered

Convection, and Wellbore Energy Conversion
Project Period: 9/1/2011-9/30/2016




Scope of this talk

Geothermics 53 (2015)

A downhole heat exchanger for horizontal wells in low-enthalpy
geopressured geothermal brine reservoirs

Yin Feng ', Mayank Tyagi*, Christopher D. White?

Craft & Hawkins Department of Petroleum Engineering, Louisiana State University, United States

Geothermal Energy 5:13 (2017)

Numerical analysis of downhole heat

exchanger designed for geothermal energy
production

|. Akhmadullin‘® and M. Tyagi




De-risking Geothermal Energy Exiraction
and Conversion

» Single Directional Wellbore ( => Cost)
» /ero Mass Withdrawal (ZMW) ( => Surface handling and reinjection cost)
» | ong Downhole Heat Exchanger ( => Improved efficiency)

» Reduced risks for microseismicity, subsidence, or lifting ( => Lower maintenance
cost)

» Maintain wellbore integrity ( => Closer to reservoir TE during operational life)
» Potential for within wellbore energy conversion ( => Critical Infrastructure)

» Potenfial fo combine with “OTHER"” metrics ( => Economics and Sustainability)
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Fig.4. Temperature variation along flow path in the DHE for different configurations
[lines: analytical solution; symbols: numerical solution].

Table 1
Baseline parameters for sensitivity study.

Reservoir properties
Rock density

Heat conductivity
Temperature

DHE geomelry
Length (baseline)
Quter casing OD, ID
Inner casing OD, ID
Tubing OD, ID

Heat conductivity

Working fluid (n-butane) properties
Density

Heat conductivity

Specific thermal capacity
Viscosity

Injection temperature

Mass flow rate

Geofluid (water) properties
Density

Heat conductivity
Specific thermal capacity
Viscosity

Mass flow rate

2700kgm™3
1.9Wm'K™!
149°C

305m
21.91,19.37cm
16.83, 15.36cm
12.70,10.86 cm
45Wm~'K-!

582kgm 3
0.107 Wm~ 1K1
2763 kg 1K
1.7 x 10~# Pas
32°C
5.25kgs™!

1000 kg m3
0.519Wm-1K!
3182 kg 1K
1.1x10#Pas
234kgs!




Resulis

(a) configuration G, geofluid through tubing (b) configuration W, working fluid through tubing
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Fig. 5. Temperature variation for three heat exchanger lengths. (a) For configuration G, the working fluid is warmed in the annulus by convection. For longer DHE lengths, 8
further heating of the working fluid occurs only near the brine inlet near the heel of the well. (b) For configuration W, the tubing is insulated so that there is no warming of =
the working fluid until it reaches the toe of the well and reverses into the inner annulus.
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Fig. 11. 100°C isotherm map of the study area (Szalkowski and Hanor, 2003).

Parameters for the computational model.

Reservoir

(
f Rock density 2700kgm—3
Heat conductivity 1.9Wm™'°C

Geothermal gradient 28°Ckm™!
Permeability 200mD
Porosity 0.20
Dip angle 5¢
Thickness 100 m
Width x length 2000 m x 2000 m
Geofluid
Density 1000 kgm 3
Heat conductivity 0.649Wm-1°C1!
Specific thermal capacity 3726] kg 1°C1
Viscosity 3x 10 *Pas
DHE
°C
222 160
0° 200
0 2000 O 2000
500
30
5 260
0
Soo Soo
3 3
&
ogo  © 0

43.3

2 000 2 000

Fig. 16. Temperature contours of the 2D x-z plane in the middle of the 3D system (y = 1000 m) containing the DHE [top: 0°; middle: 5°; bottom: 28° and left: down dip; right:
up dip], where the solid line represents the DHE section and the geofluid is reinjected through dash line further away.



Reservoir pressure
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\\ Completion design scheme for a horizontal well with the downhole heat exchanger



Operational principle - Zero Mass Withdrawal (ZMW)
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Working Fluids Selection
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Power extraction subsystem
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Reservoir temperature 126C
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