ORC for Geothermal Sources
An Efficient Technology?
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ORC technology

The working principle
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ORC tech. & geothermal applications

Why so suitable for (low-T) geothermal sources?

» Good match with T profile of the thermal source by working
fluid selection
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ORC tech. & geothermal applications

Why so suitable for (low-T) geothermal sources?

» Good match with T profile of the thermal source by working
fluid selection

» Cycle configurations: saturated, (superheated), supercritical
(at low P), two-pressure levels

» Simplicity (low P, low Ah, ..o, dry €xpansion, non-extractive
regeneration)

» Higher condensing P than steam (@ T.ong = 313 K, Psteam =
0.07 atm vs. Porc > 1 atm)

(; \ Propulsion
TU Delft & Power



How ORC geothermal plants look like
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ORC plant performance — An example

Example: geothermal source with brine Iin liquid state @ 423 K

Tgrine = 423 K DRBINE

No limits
on TRe—ini.
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ORC design variables:
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Butane

Po= 25 KW/Kgphrine
Nplant = 4. 9%

ORC Components

r

.

N
¢ ATpp,HEX = 10K - 77pump = 0.8

* ATpp,ACC = 5K * Nfan = 0.65
* TNturbine = 0.9 * APqir acc = 125 Pa)




(Ideal) Lorentz’s Cycle — The Benchmark?

. . . TO 4
Weev = Myrine [(h — hy) — To(s — 5p)] = Qavail [1 ] Ideal Lorentz

: Ah/ As
NMiorentz = .VVrev
Qavail.
=1- MT})AS =1- (Tmax—To)/Tlon(Tmax/To> <1- T:nb = TNcarnot
but > Ncarnot* T

Carnot*

For Tyrine = 423 K& Ty = 303 K

Py, =80 kW/kgbrine
Nplant = 15.7%
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Real Lorentz Cycle

Accounting for equipment performance

Heat Transfer

* ATypacc = 5K Nplant = 8.9%
* TNfan = 0.65

* APyir, acc = 125 Pa

Turbomachinery

* Nturbine = 0.9 Pel= 39 5 kW/kgbrine
nplant =7.8%
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~+ 60% wrt
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How can we improve ORC performance?

Hypothesis #1: improve fluid selection

Approach:

» Physically-based equation of state: PC-SAFT
Molecule: chains of spherical segments

» ldea: Optimize EoS parameters (m,o,€) +
cycle parameters

Y -

- Optimum Ideal Fluid & Cycle (Better Benchmark!)
» Look for fluids similar to ideal fluid
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How can we improve ORC performance?

Hypothesis #1: improve fluid selection

» Optimal Pseudo-fluid simple cycle:
T.rit =392K; 0 = 3.9

P, = 35 KW/Kgprine < 15% gap with “real”
Nplant = 6.8% Lorentz’s cycle

» Best fluids: perfluorocarbons, CFC,
HFO-1336mzz-E

Expensive fluids and
high GWP (except HFO)!
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How can we improve ORC performance?
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Hypothesis #2: use fluid mixtures
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ldeal binary mixtures vs ideal pure fluids

Approach:
» Physically-based equation of state: PC-SAFT

» Optimize EoS parameters (m,o,e) of the two fluids &
cycle parameters + aircooler preliminary design

- Optimum pseudo-mixture & cycle

freedom: = | |l
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ldeal binary mixtures
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ldeal binary mixtures — optimal glide
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Optimal glide results from
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(Ideal) Mixtures vs pure fluids
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(Ideal) Mixtures vs pure fluids
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Real mixtures vs pure fluids
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Second Principle Efficiency

PC-SAFT Optimum
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If working fluids = hydrocarbons
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How can we improve ORC performance?

Hypothesis #3: two-phase expansion (TBA). Nexpander IS key!

Politecnico di Milano,
Univ. of Sussex

Henrik Ohman (KTH, Atlas Copco)

@} NASA Report 32-987: Acceleration of Liquids in 2-Phase Nozzles
TUDelft & bropulsion
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Flash Cycle vs. ORC
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Flash Cycle vs. ORC - Effect of CO,
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ORC best solution also for higher T & vapor quality of the brine?
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Conclusions

» ORC technology is efficient! Economic & environmental reasons
drive working fluid choice, thus impacting plant efficiency

» Glide over condensation offers limited thermodynamic benefit

» Hydrocarbon mixtures enable cycle efficiencies similar to those
of the best (pure) refrigerants, but system complexity increases

» ORC with 2-phase expansion can be an attractive solution if
efficient expanders are available

» If CO, fraction in the brine is high, minimize brine flashing and
consider cooling it down in an ORC system
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