Simulation of landslide-generated tsunami event from Lituya Bay in Alaska

Computational fluid dynamics (CFD) is an engineering tool that uses numerical methods to analyze physical phenomena involving fluid flow. Multiphase flows, in particular, present many challenges due to intricate mixing and interfacial transients that can occur. Southwest Research Institute® (SwRI®) engineers have more than 30 years of experience in using and customizing both commercial and SwRI-developed CFD codes to meet client needs.

SwRI conducts research for a diverse range of clientele problems in the oil and gas industry, space science, medical community, food processing, environmental agencies, and the Nuclear Regulatory Commission. Reasons for employing CFD alone, or in conjunction with experimental testing, may include the need for:

- Rapid analysis with reduced resource requirements
- Fewer prototype iterations
- Corroboration of experimental results
- Investigation of parameters not obtainable via traditional experimental techniques (due to time scales, impracticality of sensor placement, visual obstructions, etc.)

Applications

SwRI engineers have applied CFD techniques to model a wide variety of industrial scenarios, including:

- Oil and gas production/transport
- Pipeline accidental spill and leak assessment
- Space vehicle propellant dynamics
- Environmental flows
- Combustion
- Medical device operation
- Food processing
- Fluid-structure interactions

Using state-of-the-art software in combination with parallel processing capabilities, SwRI strives to provide timely solutions for development and operational challenges.
SwRI-developed moisture/humidity model used to gauge susceptibility of gas transmission pipelines to corrosion

Bubble column sparger analysis conducted to determine uniformity of gas flow from outlets and bubble size (velocity contours with vector overlay at outlets)

CFD simulations used to assess the velocity profile distortions in natural gas metering stations caused by different header configurations upstream and downstream of an ultrasonic meter (simulation results validated by SwRI experiments)

We welcome your inquiries.
For more information, please contact:

Raouf Tajik
Research Engineer
210.522.4524
raouf.tajik@swri.org

Steven Green
Institute Engineer
210.522.3519
sgreen@swri.org

Fluids Engineering Department
Mechanical Engineering Division

fludflowcfd.swri.org
mff.swri.org