

KIEWIT OVERVIEW

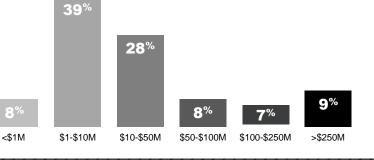
\$12.1 billion earned revenue in 2021.

\$10.3 billion yearly average over the past 10 years.

Fortune 500 company for 20+ years.

One of the largest employee-owned construction and engineering firms in North America.

50+ million direct-hire manhours annually.


Self-performing scopes of work provides significant safety, quality and schedule advantages to our projects.

28,800 employees of mobile workforce.

16,400 craft 12,400 staff

PROJECTS BY CONTRACT VALUE

No job is too large or too small. We deliver world-class solutions to projects of every size

ENERGY TRANSITION MARKETS

Offshore wind Onshore wind Solar Geothermal Hydropower

Renewable diesel Sustainable Aviation Fuel (SAF) Renewable natural gas

Post-combustion
Direct Air Capture (DAC)
Utilization
Gathering/Purification
Other

Hydrogen Ammonia Electrification

Battery (BESS)
Hydroelectric energy storage
Other storage

Pyrolysis Solvent

PETRA NOVA CARBON CAPTURE

Thompsons, Texas

OWNER

A joint venture of NRG Energy and JX Nippon Oil & Gas Exploration Corp with DOE funding

EPC TEAM

MHI and Kiewit subsidiary, TIC – The Industrial Company

CONTRACT

EPC, Lump Sum

KIEWIT'S SCOPE

General construction and balance-of-plant engineering for CO2 capture from 240 MW slipstream from coal power plant.

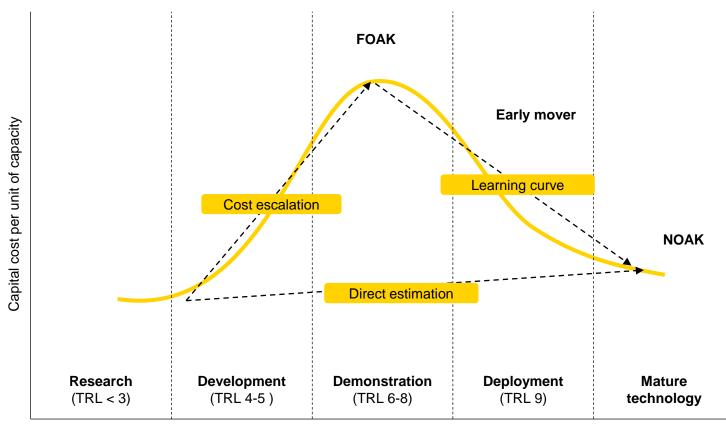
CO₂ CAPTURED

- ~4,700 tonne/day CO₂ Capacity
- 3.54 million tonne (2017 2019)
- 90+% capture efficiency (3-year average)

BASELINE AND FINANCIAL CHALLENGES

BASELINE - 2021

- Projects financially challenged with current 45Q
- Client expectations vs. Reality
- Risk profile for finance is challenged


FINANCIAL CHALLENGES

- Credit vs. direct pay
 - 15% impact
- Capex/ Opex tradeoffs drive uncertainties into the future
- Scale drives down \$/tonne but can limit pool of investors

COST EXPECTATION IMPACTS

COST CURVE VS. TECHNOLOGY READINESS LEVEL

Stage of technology development and deployment

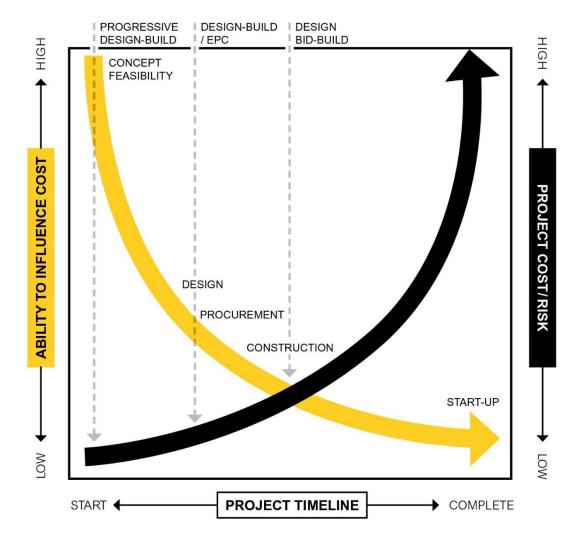
Source: https://www.sciencedirect.com/science/article/pii/S0306261917313405

INFRASTRACTURE INVESTMNET & JOBS ACT / BUILD BACK POTENTIAL IMPACTS

CONCEPT	COST	SCHEDULE
Prevailing wage	•	_
DOE loan	•	(NEPA)
75% of facility emissions	1	\$/tonne may scale better

RISK PROFILE AND PROJECT FINANCE

RISK PROFILE

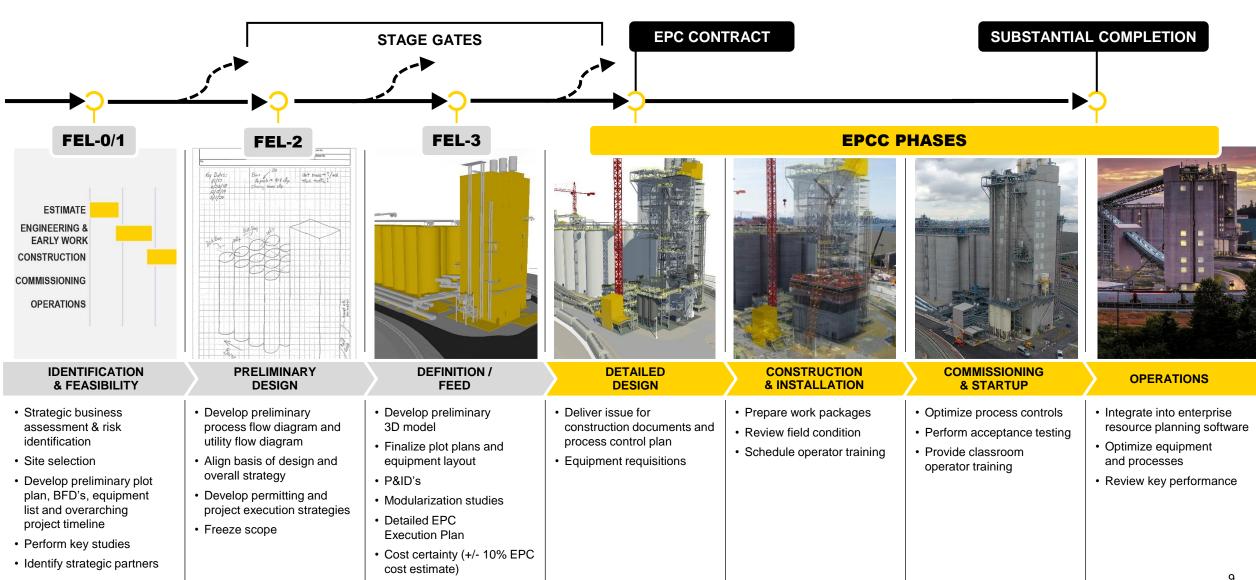

- Competing for revenue with onshore / offshore wind and solar
- ESG exposure
- 45Q / CCUS / offset market
- Well known and understood technology and markets (renewables) vs. niche
- Power | No secondary product driving investment → CCUS competes with renewables + storage

PROJECT FINANCE

- Non-recourse, money available
- Risk transfer at well / storage and claw back potential

EARLY CONTRACTOR INVOLVEMENT

Uses the knowledge and experience of the contractor in early development stages of a project.


- >>> Efficient execution in a collaborative environment across:
 - Planning

Procurement

Design

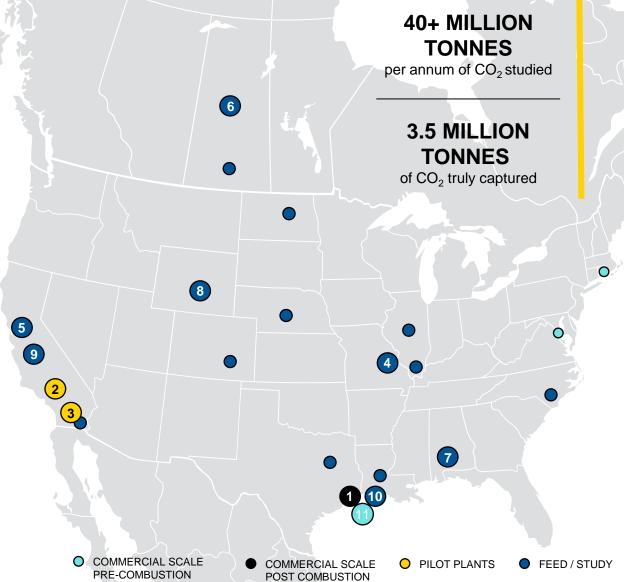
Execution

PROJECT DELIVERY FROM FEASIBILITY TO COMMISSIONING

CO2 CAPTURE SUPPLY CHAIN

Technology Readiness Level and Commercial Readiness Index

•	Basic Technology Research	Resea Prove Fe		System & System Test Technology Technology Subsystem Launch and Development Demonstration Development Operations		ch and	Supported Commercial Commercial			Competitive Commercial					
			1	I							Scale				etition driving development
	TRL1	TRL2	TRL3	TRL4	TRL5	TRL6	TRL7	TF	RL8	TRL9			Multiple Commercial		Bankable Asset Class
			Ну	Hypothetical Commercial Proposition Commercial Small Sca							Applications		Asset Class		
					CRI1					CRI2	CR	13	CRI4	CRI5	CRI6
CAPTURE		Ionic Liquids				Chemical Looping	Oxy- combustion Direct Air- Capture				Pos				Pre- combustion for H2 Production
TRANSPORT														Compression	on & Pipeline Trucking
ANS							Rail								
H					Marine Shipping (Ship Design & Infrastruc			astruc	ture)						
\GE										Saline	Aquifers	S			CO2-EOR
STORAGE		De			Depleted Oil	and Gas Field	3		Ocean Storag	10					
S				Mineral	Storage					Ocean Storag	JC				


KEY TAKEAWAYS

- Early EPC support required
- 2022 is a bridge to projects in 2023
- Small investments / demonstrations underway
- Current 45Q in the US is generally insufficient to finance projects
- We want to spend our time on projects that can get completed
- DOE studies have developed pricing and support market development, but items excluded from the cost of capture have created a gap between expectations and reality
- Competition for tax equity investments is stiff and some markets are more mature and easier investments for large financial institutions
- More innovation is needed in CCUS
- Undisciplined project developments and project execution can do more harm than good to the reputation of the industry if they are not successful

SELECT CARBON CAPTURE EXPERIENCE

	PROJECT NAME	TECHNOLOGY	SIZE
1	NRG Petra Nova Carbon Capture Project	MHI amine	1.6 MTPA
2	Chevron Svante Pilot	Svante solid sorbent	0.01 MTPA
3	Direct Air Capture Pilot	Climeworks DAC	10 TPA
4	DOE 2515 – Holcim/Air Liquide	Air Liquide cryocap	~2.8 MTPA
5	DOE 2515 – Calpine/ION	ION amine	~2.0 MTPA
6	Canadian New NGCC Study	Amine	~2 MTPA
7	DOE 2515 – GE / Linde / Southern	Linde / BASF	~1.4 MPTA
8	Direct Air Capture Plant	Climeworks DAC	0.1 MTPA
9	Mendota Biomass CCUS Study	Confidential	0.35 MTPA
10	LNG CCUS Study	Confidential	Confidential
11	Calcasieu Pass LNG System	UOP Amine	0.4 MTPA

THANK YOU

Bob Slettehaugh | Director, Carbon Capture

bob.slettehaugh@kiewit.com linkedin.com/in/bob-slettehaugh