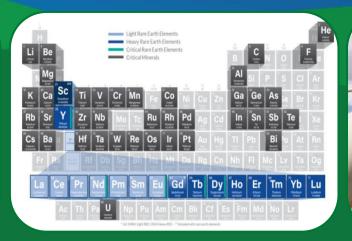


Carbon Capture Program at DOE

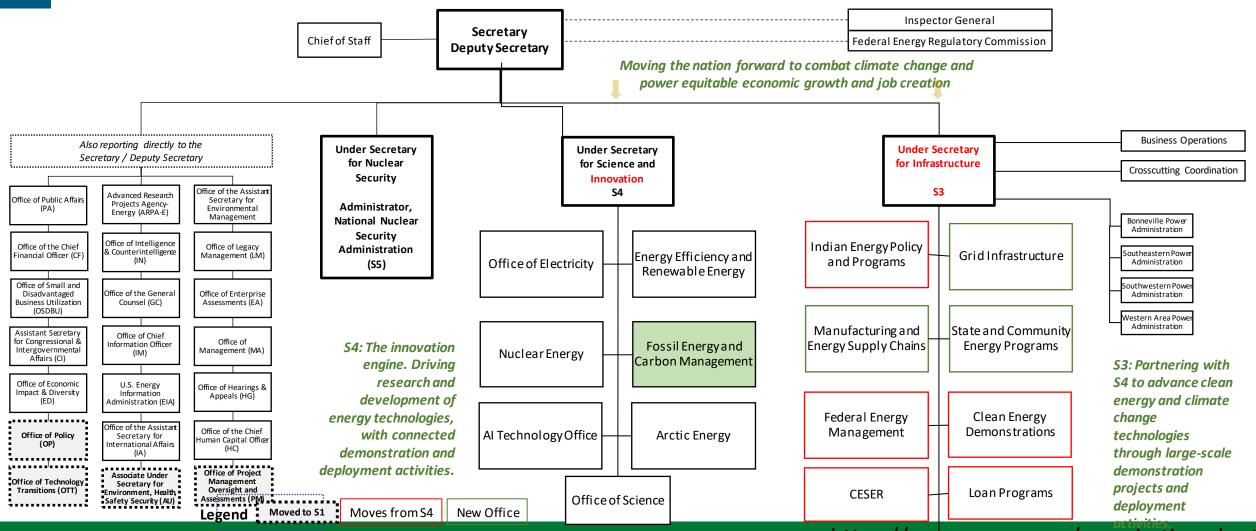
Progress toward decarbonization of Industrial and Power Sectors


Dr. Dan Hancu

Senior Program Manager, Point Source Carbon Capture FOSSIL ENERGY AND CARBON MANAGEMENT

April 6, 2022

Agenda


- DOE Realignment
 - ☐ Fossil Energy and Carbon Management (FECM), Office for Clean Energy Demonstrations (OCED)
- Infrastructure Bill
 - ☐ Carbon managements provisions.. CCS Demos, DAC Hubs, Carbon Capture Large Pilots
- FECM Carbon Capture Program
 - ☐ Program structure; technical approach; industrial, power, DAC projects (highlights); current FOAs
- Program Outreach

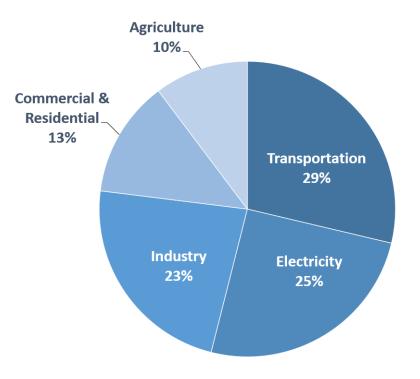
Administration's goals:

- ✓ 50% emissions reduction by 2030
- ✓ Carbon emissions-free power sector by 2035
- ✓ Net zero emissions economy by no later than 2050

U.S. DEPARTMENT OF ENERGY 2

Realigned DOE

https://www.energy.gov/organization-chart


Fossil Energy and Carbon Management (FECM)

Office of Fossil Energy and Carbon Management DOE-FE is now DOE-FECM

New name for our office reflects our **new vision**

- President Biden's goals:
 - 50% emissions reduction by 2030
 - CO₂ emissions-free power sector by 2035
 - Net zero emissions economy by no later than 2050

Total U.S. Greenhouse Gas Emissions by Economic Sector in 2019

U.S. Environmental Protection Agency (2021). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2019

FECM Mission: Deep Decarbonization

Minimize environmental and climate impacts of fossil fuels from extraction to use

Priority Technology Areas

- Point source carbon capture
- 2. Carbon dioxide (CO₂) removal
- 3. CO₂ conversion into products
- 4. Reliable CO₂ storage
- 5. Hydrogen production
- 6. Critical mineral production from industrial and mining waste
- 7. Methane mitigation

Office of Carbon Management (FECM-20)

Office of Resource Sustainability (FECM-30)

Address hardest-to-decarbonize applications in the electricity and industrial sectors

Office of Clean Energy Demonstrations (OCED)

OCED established December 2021

- Builds on existing DOE investments in clean energy research and development
- Increases DOE's partnership with industry leaders

OCED Projects Areas:

- Clean hydrogen
- Carbon capture
- Grid-scale energy storage
- Small modular reactors and more

DOE Will Oversee \$20 Billion Federal Investment to Stand Up Clean Energy Projects Across the U.S. to Reach President Biden's Net-Zero Goals

<u>DOE Establishes New Office of Clean Energy Demonstrations Under the Bipartisan Infrastructure Law Department of Energy</u>

Agenda

- DOE Realignment

 FECM, OCED
- Infrastructure Bill
 - ☐ Carbon managements provisions.. CCS Demos, DAC Hubs, Carbon Capture Large Pilots
- FECM Carbon Capture Program
 - ☐ Program structure; technical approach; industrial, power, DAC projects (highlights); Current Issued FOA
- Outreach

Bipartisan Infrastructure Law

\$10+ billion in new carbon management funding over 5 years through the Infrastructure Investment and Jobs Act (Bipartisan Infrastructure Law).

Carbon Dioxide Removal - Direct Air Capture

Regional Direct Air Capture Hubs: \$3.5 billion DAC Technology Prize Competition: \$115 million

Front-End Engineering Design Studies

Carbon Capture Technology Program: \$100 million

Carbon Dioxide Utilization and Storage

Carbon Storage Validation and Testing: \$2.5 billion

Carbon Utilization Program: \$310 million

Hydrogen Hubs

 \$8 billion (for at least four projects, including at least one using fossil fuels with carbon management)

Carbon Capture Demonstrations and Large Pilots

• \$3.5 billion

Carbon Capture Demonstrations – Key Provisions

Demonstration projects (16 962(b)(2)(C) of the Energy Policy Act of 2005 (42 U.S.C. 17 16292(b)(2)(C))

\$2.5B

- Establish a demonstration program through a competitive, merit-reviewed process,
- Enter into cooperative agreements for demonstration projects to demonstrate the construction and operation of 6 facilities to capture carbon dioxide from coal electric generation facilities (2 projects), natural gas electric generation facilities (2 projects), and industrial facilities (2 projects).

Each demonstration project shall be designed to further the development, deployment, and commercialization of technologies to capture and sequester carbon dioxide emissions from new and existing coal electric generation facilities, natural gas electric generation facilities, and industrial facilities;

https://uscode.house.gov/view.xhtml?hl=false&edition=prelim&req=granuleid%3AUSC-prelim-title42-section16292&num=0&saved=%7CKHRpdGxlOjQylHNlY3Rpb246MTYyOTMgZWRpdGlvbjpwcmVsaW0p%7C%7C%7C0%7Cfalse%7Cprelim

Carbon Capture Large Pilots.. Key Provisions

Key BIL Sec. 41004(a)

PROJECTS.—There are authorized to be appropriated to the Secretary to carry out activities under section 7 962(b)(2)(B) of the Energy Policy Act of 2005 (42 U.S.C. 8 16292(b)(2)(B))—

- (1) \$387,000,000 for fiscal year 2022;
- (2) \$200,000,000 for fiscal year 2023;
- (3) \$200,000,000 for fiscal year 2024; and
- (4) \$150,000,000 for fiscal year 2025.*

The term "large-scale pilot project" means a pilot project that—

- (A) represents the scale of technology development beyond laboratory development and bench scale testing, but not yet advanced to the point of **being tested under real operational conditions at commercial scale**;
- (B) represents the scale of technology necessary to gain the operational data needed to understand the technical and performance risks of the technology before the application of that technology at commercial scale or in commercial-scale demonstration; and
- (C) is large enough—
 - (i) to validate scaling factors; and
- (ii) to demonstrate the interaction between major components so that control philosophies for a new process can be developed and enable the technology to advance from large-scale pilot project application to commercial-scale demonstration or application.


https://uscode.house.gov/view.xhtml?hl=false&edition=prelim&req=granuleid%3AUSC-prelim-title42-section16292&num=0&saved=%7CKHRpdGxlOjQyIHNlY3Rpb246MTYyOTMgZWRpdGlvbjpwcmVsaW0p%7C%7C%7C0%7Cfalse%7Cprelim

DAC Hubs-Key Provisions

Direct Air Capture Hubs

SEC. 40308. CARBON REMOVAL; Amended Section 969D of the Energy Policy Act of 2005 (42 U.S.C. 16298d)

HUB DEFINITION:

a network of direct air capture projects, potential carbon dioxide utilization offtakers, connective carbon dioxide transport infrastructure, subsurface resources, and sequestration infrastructure located within a region.

Regional DAC Hubs \$3.5 B

FY 22 - FY 26: \$700M / yr.

Each of the 4 regional direct air capture hubs developed shall be a regional direct air capture hub that has the capacity to capture and sequester, utilize, or sequester and utilize at least 1,000,000 metric tons of carbon dioxide from the atmosphere annually from a single unit or multiple interconnected units.

REGIONAL CARBON MANAGEMENT APPLICANT EDUCATION WORKSHOPS

Fossil Energy and Carbon Management

Join USEA on April 7th, as we partner with the U.S. Department of Energy's Office of Fossil Energy and Carbon Management (DOE-FECM) for a Virtual Kickoff of its Regional Carbon Management Applicant Education Workshops. These workshops support implementation of the Bipartisan Infrastructure Law (BIL) and will target potential applicants interested in developing commercial-scale storage facilities, point-source CO2 capture demonstration projects, direct air capture hubs, hydrogen production hubs with carbon capture and storage (CCS), carbon utilization, and CO2 transport that will be required by these BIL provisions and support decarbonization.

Selected Agenda Items:

- Components of large-scale projects (DAC Hubs, CCS Demos, H₂ Production Hubs with CCS, Carbon Utilization and CO₂ transport)
- Lessons learned from past demo projects
- DOE procurement requirements and processes
- NEPA requirements
- Environmental Justice and Community engagements
- Energy Jobs;
- Partnering with Tribal Nations

Virtual Event: April 7th (1:00 PM, EST)

In-person Regional Events

- April 13th: Columbus, OH
- April 19th: New Orleans, LA
- April 26th: Salt Lake City, UT

https://us02web.zoom.us/webinar/register/WN FsT1PNd6RCOPp6oRn3-Tcg

Agenda

- DOE Realignment
 - ☐ FECM, OCED
- Infrastructure Bill
 - ☐ Carbon managements provisions.. CCS Demos, DAC Hubs, Carbon Capture Large Pilots
- FECM Carbon Capture Program
 - ☐ Program structure; technical approach; industrial, power, DAC projects (highlights); Current issued FOAs
- Outreach

Carbon Capture Program...Mission

Mission

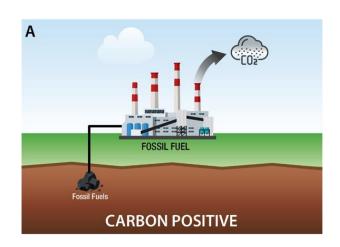
- Develop cost-effective point source capture and CDR technologies throughout the power-generation and industrial sectors
- Ensure the U.S. will continue to have access to safe, reliable, & affordable low-carbon energy generation

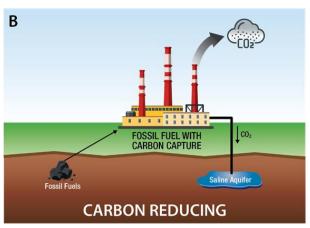
Drivers/Challenges

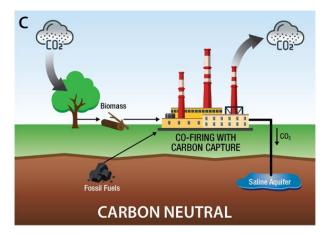
- Reduce carbon capture CAPEX/OPEX under a wide range of feed conditions and high capture efficiencies
- Demonstrate first-of-a-kind carbon capture coupled to dedicated and reliable carbon storage, that will lead to commercially viable nth-of-a-kind opportunities for widescale deployment

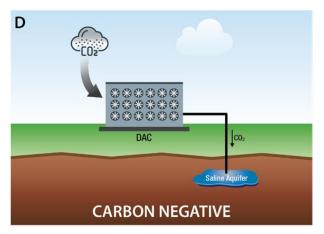
Goal & Metrics

 Support U.S goal to achieve carbon pollution-free power sector by 2035 and zero-carbon economy by 2050




DOE's Carbon Capture performance goals for coal-fired power plants

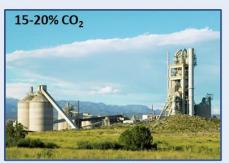



National Carbon Capture Center *Photo Source: Southern Company Services*

Carbon Dioxide Removal vs Carbon Reducing

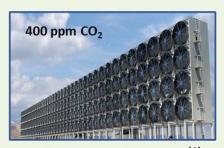
Carbon Negative vs. Carbon Reducing

CARBON REDUCING


Point-Source Capture (PSC) for Power Generation and Industrial Sectors

Power Plants

Steel Plants


Cement Plants

Hydrogen Plants

CARBON NEGATIVE

Carbon Dioxide Removal (CDR) from Air

Direct Air Capture (1)

Enhanced Weathering

Bioenergy Carbon Removal and Storage (BiCRS)

(1) Assume C storage as CO₂ off-take

Carbon Capture Program...Evolution

1st and 2nd Generation Technologies

2025: \$40/tonne CO2

2008 -

- ✓ Lower CAPEX/OPEX
- ✓ Reduced regeneration energy
- ✓ Increased working capacity

Transformational Technologies

2030: \$30/tonne CO₂

Hollow Fibers

3D Print

Biphasic Solvent

2015 -

- ✓ Water Lean Solvents
- ✓ Adv. Membranes
- ✓ Hybrid Systems
- ✓ Process Intensification

Scale-up

TCM

2018 -

- ✓ Engineering Scale testing
- ✓ FEED studies

Negative Emissions Technologies & Industrial

Carbon Engineering, DAC

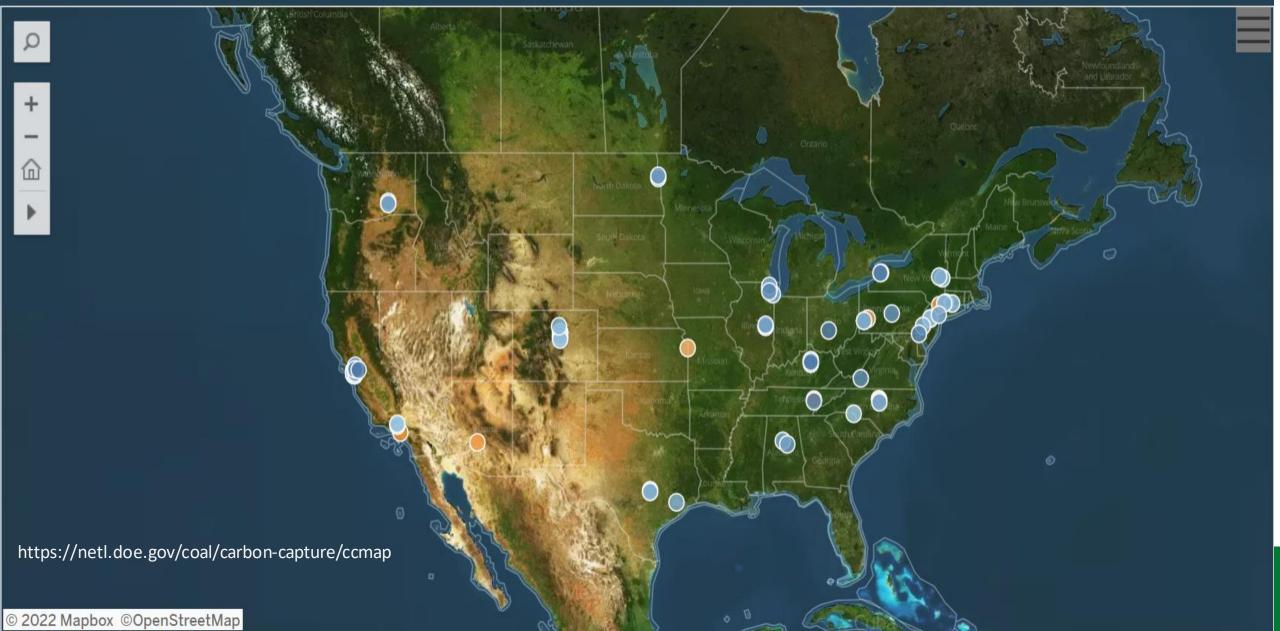

Ethanol Plant

2020 -

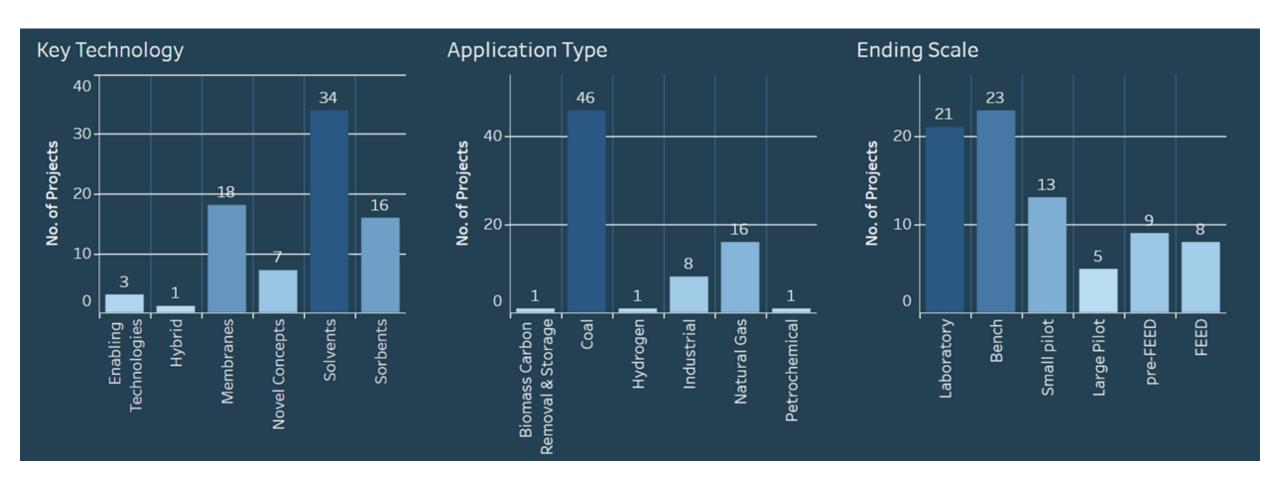
- ✓ DAC & BiCRS
- ✓ Industrial
- ✓ NG

Point Source Capture Program

Integrated Approach to Accelerate Technology Development


Point Source Capture Focus

- Develop capture technologies for the power and industrial sectors
- Reduce CAPEX/OPEX under a wide range of feed conditions
- Achieve high capture efficiencies (>95%)
- Maximize co-benefit pollutant removal
- Engineering-based Simulation (CCSI²)
- Create low-carbon supply chains (i.e., cement, steel, hydrogen, etc.)


Carbon Capture Interactive Project Map

Point Source Capture Program

Project Distribution

Pre-Commercial.. Industrial (TRL 6+)

Ethanol

Hybrid absorption & liquefaction system

Cement

MTR's membrane technology

Svante

VeloxoTherm™ adsorption-based process

Steel

ION Clean Energy's waterlean solvent-based technology

Steam Methane Reforming

Linde-BASF technology using OASE® blue solvent

Industrial Capture: Cement (pre-FEED)

Electricore, Inc.

Sorbent-based Post-Combustion CO₂ Capture

LafargeHolcim Portland Cement Plant in Florence, CO

CHALLENGE:

 CO₂ capture from cement plant flue gas at commercial scale

SOLUTION:

Svante's low CAPEX solid sorbent technology

Key Process Features and Objectives

- Complete a pre-FEED analysis for VeloxoTherm™ capture system installed at a LafargeHolcim-owned cement plant
 - Phase 1: select preferred design & plant capacity
 - Phase 2: CAPEX & OPEX estimates
- Identify plausible CO₂ storage options

Project Development and Goals - 2021

- Design a 1.5 mtpa capture system to remove CO₂ from cement kiln flue gas (14% conc.) & CO₂ from natural gas-fired steam generator (8.5% conc.)
- Pre-feasibility report completed

Project Benefits

- Reduced CAPEX as compact equipment (rotary adsorption system) to capture & release CO₂ & regenerate the sorbent
- First commercial scale Svante capture plant

FOA 2515: 2nd Closing

Carbon Capture R&D For Natural Gas and Industrial Point Sources and FEED Studies for Carbon Capture Systems at Industrial Facilities and Natural Gas Plants

Closing Date: 04/11/2022

This FOA has a dual focus for <u>natural gas & industrial</u> applications:

- 1. FEED studies using Generation 2 system capable of ≥95% CO₂ capture
- 2. Develop lower-cost, highly efficient, transformational carbon capture technologies

Area of Interest

AOI 4: Carbon Capture R&D: Laboratory-Scale Testing of Highly-Efficient Materials or Novel Concepts for Natural Gas Combined Cycle (NGCC) Power Plants

AOI 5: Engineering-Scale Testing of Transformational Post-Combustion Carbon Capture Technologies for NGCC power plants

AOI 6: Engineering-Scale Testing of Transformational Carbon Capture Technologies for Industrial Plants and Waste-to-Energy Plants

AOI 7: Front-End Engineering Design Studies for Carbon Capture Systems at Existing (Retrofit) Domestic Industrial Facilities and NGCC Power Plants

Pre-Commercial.. H₂ Generation (TRL 6+)

Advanced CCS Systems for SMR

Svante VeloxoTherm™ solid adsorbent at Linde SMR H₂ plant

- ~1,100,000 tonnes/year net
 CO₂ capture
- 90% Capture Efficiency
- Production of "blue" H₂
 with 99.97% purity

Gen 1 CCS technology at Phillips 66 refinery in Rodeo, California

Separate & store ~190,000 tons/year net CO₂ from hydrogen production unit with >90% carbon capture efficiency

Advanced CCUS +for ATR

CO₂ Capture Unit at Tallgrass MLP Operations LLC's Planned Blue Bison ATR Plant

- Separate and store <u>1.66 million</u> <u>tonnes/year</u> of 95% pure CO₂ with >97% carbon capture efficiency
- System combining carbon capture, H₂ production (220 MMSCFD at 99.97% purity), and H₂ combustion in auxiliary burners

Industrial Capture: H₂ SMR (pre-FEED)

Linde Inc.

Advanced Aqueous Amine Post-Combustion CO₂ Capture

Steam Methane Reformer (SMR)

CHALLENGE:

• CO₂ capture from steam methane reformer flue gas at 90% efficiency with minimum impact on cost of H₂

SOLUTION:

 Advanced aqueous amine solvent (BASF's OASE® blue) combined with high-capacity structured packing

Key Process Features and Objectives

- Design a hybrid system and complete pre-FEED analysis for green field SMR plant for a refinery in LA.
- Utilize commercially available chemical absorption technology
- Utilize existing natural gas boilers to supply steam

Project Development and Goals- 2020

- Capture technology tested from 2009-2017
- Design a ~3,500 tonnes CO₂/day capture system

Project Benefits

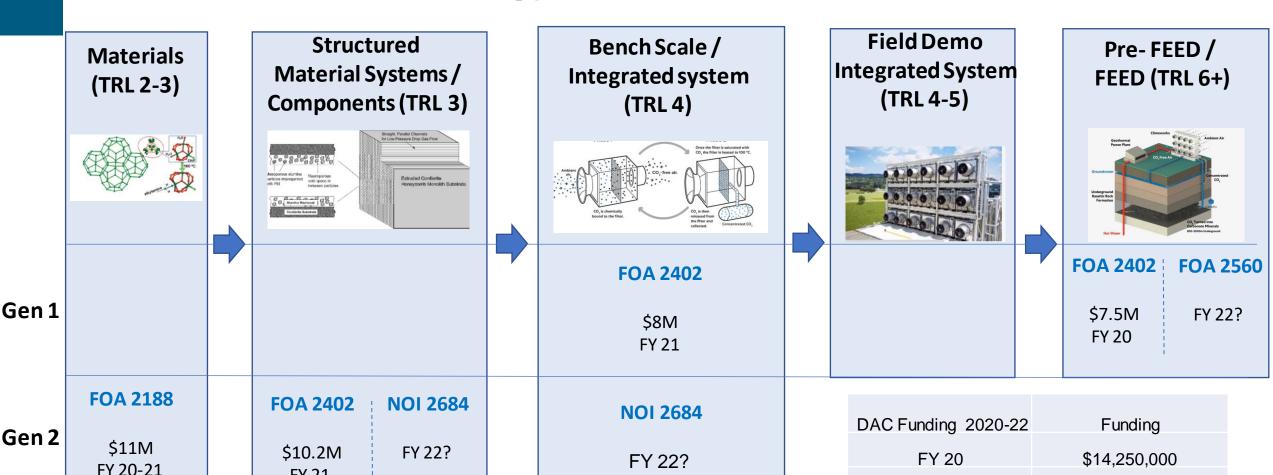
- Recovers >90% of the CO₂ from the flue gas stream produced by a reformer
- Higher CO_2 content in SMR flue gas (~22% by vol. dry basis)
- Eligibility for 45Q tax credits

FOA 2400: 2nd Closing

CLEAN HYDROGEN PRODUCTION, STORAGE, TRANSPORT AND UTILIZATION
TO ENABLE A NET ZERO CARBON ECONOMY

Closing Date: 03/30/2022

Area of Interest


AOI-8a: Front-End Engineering Design Studies for Carbon Capture Systems at Domestic Steam Methane Reforming (SMR) Facilities Producing H2 from Natural Gas

AOI-8b: Front-End Engineering Design Studies for Carbon Capture Systems at Domestic Autothermal Reforming (ATR) Facilities Producing H2 from Natural Gas

FundOpp DE-FOA-0002400 Amd 000007.pdf

FECM DAC Technology Development

FY 21

FY 21

FY 22

\$26,439,000

~ \$10,500,000

FEEDs for DAC Coupled to Low Carbon Energy Sources

Closing Date: 12/22/2021

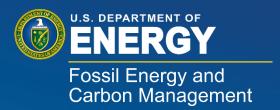
AOI 1: FEED Studies for DAC Systems at Existing (retrofit) Domestic Nuclear Power Plants

AOI 2: FEED Studies for DAC Systems at Existing (retrofit) Domestic Geothermal Resources

AOI 3: FEED Studies for DAC Systems
Using Waste Heat at Existing (retrofit)
Domestic Industrial Plants Coupled with
CO₂ Conversion Producing Low Carbon
Intensity Products

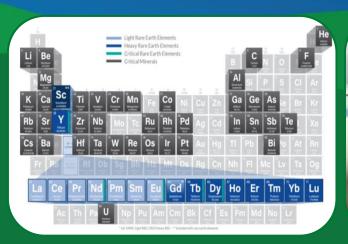
Department of Energy DOE Announces \$14.5 Million Supporting **Direct Air Capture and Storage Coupled to Low Carbon Energy Sources** OCTOBER 26, 2021 Energy gov = DOE Announces \$14.5 Million Supporting Direct Air Capture and Storage Coupled to Low Carbon Energy Sources Funding Addresses Urgent Need for Global Leadership and Collaboration on Deployment of Durable Carbon Dioxide Removal Washington, D.C. - The U.S. Department of Energy (DOE) today announced \$14.5 million in available funding to leverage existing low-carbon energy to scale-up direct air capture (DAC) technology combined with reliable carbon storage. DAC, a carbon dioxide removal approach, is a process that separates carbon dioxide (CO2) from ambient air. The separated CO2 can then be safely and permanently stored deep underground or converted into products. DAC is considered a growing and necessary field that still requires significant investments to create a cost-effective and economically viable technology that can be deployed at scale in the commercial CO2 market. Advancing the deployment of DAC approaches is critical to combatting the current climate crisis and achieving net-zero emissions by 2050-a key priority for the Biden-Harris Administration.

Carbon Capture Program.. Outreach


Carbon Capture Newsletter

Carbon Capture Program R&D Compendium

Carbon Capture Program Website



Questions?

dan.hancu@hq.doe.gov

