Stochastic Solvers for Highly Nonlinear Equations, 189558 Printer Friendly VersionPrincipal Investigators Inclusive Dates: 07/01/05 – Current Background  Numerical simulation is routinely used to predict the behavior and response of complex systems. A system's performance is directly affected by the uncertainties associated with mathematical models, physical parameters, and loadings. This requires the development and application of probabilistic analysis methods suitable for use with complex, nonlinear numerical models. Monte Carlo simulation (MCS) serves as the gold standard to which all other reliability methods are compared. Unfortunately, MCS requires many simulations and becomes excruciatingly slow in combination with sophisticated nonlinear physics models. This often renders the application of Monte Carlo techniques impractical. In addition there is a clear desire to quantify the confidence in the model simulations and predictions. For many engineering problems, a new level of sophistication in the stochastic calculus is required. Approach  Because clients are unlikely to abandon their favorite commercial or inhouse analysis codes, there is a clear technical need and business incentive to develop a stochastic solver that can easily be wrapped around an existing deterministic model. A nonintrusive formulation of the Polynomial Chaos Expansion (PCE) allows such use of a deterministic analysis code as a black box. We have investigated three nonintrusive formulations, including: (1) pointcollocation, Galerkin projection of the solution where the internal product is either (2) computed using direct numerical integration or (3) using sampling methods. We plan to use the NESSUS^{®} software as the framework for further research. The capabilities resulting from this fundamental research will represent a major step forward in the universal application of reliability analysis methods and open up an array of new application fields and significant funding opportunities. Accomplishments  To date we have established a framework to estimate the confidence bounds on both the PCE coefficients and the resulting Cumulative Distribution Function (CDF). Confidence bounds can be computed for any response quantity of interest (mean, standard deviation, CDF, or response level). The relative contribution of chaos truncation and sampling (or integration) error is identified, and the analyst can quickly determine whether a higherorder chaos or more sampling is required to improve the overall accuracy of the result. Figure 1 illustrates the concepts for a specific application:
