Going the DistanceThe incoming president of SAE International answers Technology Today's questions about vehicles, engines and fuels
In 2007, SAE
International nominated as its new president Dr. Thomas Ryan Jr., an Institute
engineer in Southwest Research Institute’s (SwRI’s) Engine and Vehicle
Technology Division. Dr. Ryan, whose expertise is in fuels research, recently
took time to discuss some of the factors that may shape the way vehicle and
engine manufacturers balance ever-tightening regulatory limits on emissions
against growing consumer demands for performance and fuel efficiency. With oil prices going higher and emissions allowances going lower, and with electricity and alternative fuels emerging as potential solutions, what is happening to the vehicle manufacturing industry? Are we seeing a short-term problem like we did in the mid-1970s, or is this a long-term change of direction for truck and automotive engineering? I believe that the current upward path of energy costs that we’re seeing is a long-term, not a short-term trend. It will have some ups and downs based on short-term changes in the supply-demand balance, but in general, costs will tend to go up due to the increasing costs of production and processing. One important thing to note is that U.S. refinery output has been in the range of 95 percent of capacity for the past several years. This means that relatively minor changes in U.S. refinery output due to, say, a breakdown at a single refinery, could have a major cost impact.
We are seeing the
introduction of energy-efficient vehicles, like the “mild hybrids,” because
consumers recognize the opportunity for overall cost savings that this type of
technology makes possible. As energy costs continue to increase, vehicles
containing more and more innovative technologies will be made possible and will
be seen as economically feasible. What are some of the factors that affect competitiveness of the currently known alternative fuels, given the economics of production and distribution and their effects on the environment and on the average driver’s cost-per-mile? Most of the currently popular alternative fuels can satisfy only a relatively small part of today’s total U.S. transportation energy demand, simply because the demand is so huge. Two of the popular alternative fuels are derived from raw materials that otherwise would go into the food supply chain. Because of the very large quantities of energy used in this country, diverting these products from food to transportation would meet only a relatively small percentage of the energy demand before food prices begin to be impacted. We are already seeing this ripple effect with the introduction of corn-based ethanol. A similar trend is likely with the soy-based biodiesel fuels.
Southwest Research
Institute has conducted extensive studies on the use of Fischer-Tropsch diesel
fuels and all indications are that the fuels offer both emissions and efficiency
benefits in current and future engines. Ethanol is an excellent fuel for spark
ignition engines due primarily to its high octane number. There are some
material compatibility and energy content issues, however. You’re beginning your term as 2008 president of SAE. How does a professional organization like SAE direct its engineering energy when the automotive industry is faced with such a wide array of technology choices? Does SAE encourage a focused approach to determine a “winning” formula and get a solution to the vehicle manufacturers as quickly as possible, or does it try to explore all of the candidate technologies and let the market decide a winner? SAE does not encourage
any particular technology but rather encourages the open exchange of information
so that scientists, engineers and policy decision-makers can make rational
choices based upon the best, most scientifically correct information. SAE serves
the mobility industry by offering the opportunity for continual learning,
literally starting in kindergarten and extending through adult-level continuing
education. SAE also provides international venues for the open exchange of
information in all areas related to the mobility industry. How is SwRI directing its own engineering energy as an independent, unbiased research institution? Similar to SAE, SwRI
does not advocate any specific technology or technology path. Our charter is to
provide society and industry with unbiased evaluations of available
technologies. These evaluations are always based on good scientific and
engineering observations and calculations. In our consortium programs, we take
pride in the fact that we examine technologies that have both very near-term
application as well as technologies that have higher risk, longer term
applications. To follow up on the previous question, how do consortia help OEMs decide which technology to adopt, when their members are highly competitive against each other?
Because of the ever
more stringent emissions regulations and tighter fuel economy requirements, our
current and previous work with research consortia have indicated that future
engines likely will feature very rapid combustion at lower temperatures, because
we know that these combustion parameters optimize emissions while providing
reasonable economy. These future engines will probably be smaller than today’s
engines, but highly boosted to operate at their most efficient power output.
They will involve large quantities of recirculated exhaust gas, and they also
will involve higher specific power levels. Besides engine performance and fuel efficiency, what is being done to address emissions in future vehicles and powertrains? It is generally
difficult to separate engine emissions and efficiency, and cost. The goals in
our consortium programs are to develop the most cost-effective technical
approaches. This means we must consider the purchase cost as well as the
operating costs. In some applications, like heavy-duty, on-road truck
applications, operating costs are critical. In this application, fuel
consumption is critical. In some off-road applications the purchase cost is
critical and fuel consumption is secondary. The best technology path varies from
application to application. It should be noted, however, that the “given” in all
applications is that the system must meet the prevailing emissions regulations
and that the regulations are always based on “best available technology.” This
effectively means that all mobility systems will have some form of exhaust
catalyst system. In general, well-designed exhaust treatment systems generally
improve the prevailing cost-benefit trade-off. How much room for improvement still remains for engine designs?
Is there a “magic bullet” technology out there awaiting discovery, something that will yield a clean-burning, fuel-sipping V-8 muscle car that seats six adults? First of all, there
are no magic bullets. Good science dictates the limits
If there is something
like a magic bullet that can cut across classes of consumers, it may lie in the
area of battery technology. Based on discussions at recent technical meetings,
it is my understanding that an all-electric vehicle whose battery has a range of
40 miles will satisfy a very large percentage of U.S. commuting needs. Consumers
in the electric-vehicle market look for reasonable range and rapid battery
recharge. Now, if a battery were developed with a highway cruise range of 100
miles and a recharge time of, say, three minutes, that would qualify, in my
opinion, as a magic bullet, assuming that it is affordable and reliable. Published in the Winter 2007 issue of Technology Today®, published by Southwest Research Institute. For more information, contact Joe Fohn. |